
Nano-consensus: ultra-fast, quorum-less coordination on the wire
(To appear at ACM Symposium on Cloud Computing 2025)

Davide Rovelli

Università della Svizzera Italiana

SAP

Switzerland

Christian Faerber

Graham McKenzie

Altera

Germany, United Kindgdom

Ali Pahlevan

SAP

Germany

Sina Darabi

Università della Svizzera Italiana

Switzerland

Patrick Jahnke

turbalance

Germany

Patrick Eugster

Università della Svizzera Italiana

Switzerland

ABSTRACT
Consensus, widely regarded as the most fundamental primitive in

distributed systems, lies at the core of countless services that require

coordination among remote processes. Datacenter services typi-

cally achieve consensus through long-established, quorum-based

algorithms such as Paxos and Raft, including recent re-adaptations

for kernel bypass datapaths (e.g. smartNIC/RDMA-based consen-

sus). While these optimizations can reduce latency to the µs-scale,

they remain constrained by inherent message complexity, namely

the need for acknowledgments from majority quorums to tolerate

faults and arbitrary message delays. Our approach takes a step fur-

ther from bare acceleration of classical primitives, focusing instead

on leveraging FPGA-smartNIC and priority-queue reservation to

achieve synchronous remote interactions in practice. We use syn-

chrony to devise a novel, efficient quorum-less consensus protocol

which we use to build Nano-consensus: a novel hardware consen-

sus engine. Nano-consensus operates at network line rate and can

reach consensus in 1.03µs for single-packet instances, delivering

3.82× latency and 4.8× improvements over the state of the art.

We demonstrate how Nano-consensus can be integrated into dis-

tributed applications to boost both performance and consistency.

1 INTRODUCTION
Coordination in datacenters. Modern high-performance, user-

facing applications including µs-scale key-values stores and high-

frequency trading frameworks are deployed as interactive online

services running 24 × 7 in datacenters with stringent availability

and reliability requirements only be met by replication and or-

chestration on multiple resources. Such distributed coordination

is provided by algorithms which solve the well-known consensus

problem. As network bandwidth approaches the Tbps limit [3] and

demands increase accordingly, a primary concern in datacenter

design is making consensus efficient to avoid it being a bottleneck

without sacrificing fault tolerance or consistency.

The limits of software coordination. This very challenging task

has recently received significant research attention, with focus

on accelerating traditional quorum-based consensus algorithms

via kernel bypass technologies in software. Recent solutions in-

clude adaptations of popular Paxos [50] and Raft [64] algorithms

to custom network stacks [41, 46], remote direct memory access

(RDMA) [7, 31, 40], data plane development kit (DPDK) [48], and

extended Berkeley packet filter (eBPF) express data path (XDP) [72,

86]. By overcoming the limitations posed by the commodity net-

work stack, these approaches manage to reach consensus in tens of

µs while withstanding high request throughput in the common-case.

Alas, software coordination algorithms often have to compromise

good common-case performance benefits with high tail-latency

beyond some 99.𝑥 th percentile. This limitation arises from the in-

herent multi-tasking nature of the underlying software stack and

operating system (OS), which must inevitably sacrifice, i.e., de-

lay/preempt, some processing tasks upon contention. In addition,

on top of relying on specific kernel bypass technologies (often a

given version), these solutions employ disruptive optimizations

(e.g., custom priority scheduling [28, 58], heavily customized OS

and power configuration settings [31, 41, 72]), and also require a lot

of server CPU cores and network bandwidth. As a result, software

coordination algorithms are often difficult to deploy and co-locate

on general-purpose servers – contrary to the common assumption

that software inherently offers such flexibility.

Shortcomings of bare acceleration. The rising availability of smart

network interface controllers (smartNICs) equipped with field pro-

grammable gate arrays (FPGAs) in major clouds, e.g., Alibaba [9],

Amazon [12] and several others [15], offer a more efficient, more

stable and self-contained alternative to software-based packet pro-

cessing routines. A small number of hardware-supported consensus

algorithms have emerged in this context, including services which

partially or fully offload algorithms to programmable network

switches [14, 22, 23, 43] or to programmable smartNICs [41]. FPGA-

based smartNIC (FPGA-smartNIC) solutions [10, 36, 39], spear-

headed by Consensus in a Box [39], have proven to be able to handle

a near-to-capacity rate of client requests at a low latency [10], out-

performing software solutions. However, these approaches have

a fundamental limitation in that they only focus on accelerating

classic quorum-based consensus algorithms which were devised

for slower, unreliable networks and unpredictable software pro-

cessing latency, thus overlooking the interaction (communication

+ processing) stability of modern network hardware. As shown in

our extensive tests under heavy network and processing stress (see

Tab. 1), hardware worst-case remote interaction latency is only

few nanoseconds more than the average, unlike traditional software

stacks which incur heavy latency degradation towards the tail. Our

work builds on this key observation: the combination of uninter-

rupted access to incoming packets on dedicated hardware modules

1

Davide Rovelli, Christian Faerber, Graham McKenzie, Ali Pahlevan, Sina Darabi, Patrick Jahnke, and Patrick Eugster

and reliable datacenter network protocols providing bounded la-

tency [30, 41, 72–74] make it practical to build systems relying on

synchronous interactions for critical tasks. FiDe [72], for instance,

builds synchrony support through traffic engineering and process

isolation techniques to implement reliable process failure detection.

FiDe however targets commodity systems without smartNICs and

relies on complex OS fine-tuning which limits its reliability.

Unleashing hardware potential with nano-consensus. We propose

Nano-consensus, a novel system based on software/FPGA-based

smartNICs co-design which exploits the programmability and pre-

dictability of datacenter networks. Our prototype shows that plac-

ing logic close to thewire leads to extremely robust processing times

which, together with traffic prioritization in network switches, lim-

its the worst-case latency to a mere few clock cycles more than the

average (30ns in our experiments). We use the achieved interaction

stability to devise a novel, leader-based consensus primitive, dubbed

looped one-way imposition (LOWI), which requires only one mes-

sage delay to reach consensus when multiple instances are exe-

cuted in series, e.g., in state machine replication (SMR). To be clear,

the efficiency and correctness of LOWI depend on assuming syn-

chrony. While all-encompassing synchrony is unfeasible, we find

the probability of synchrony violations in a controlled datacenter

environment is negligible for practical purposes, as also evidenced

by recent software services [41, 72]. Nano-consensus further sup-

ports synchrony from the ground up by delegating its execution

entirely to network hardware, in contrast to works that simply take

synchrony as a given including replicated services [1, 2, 70] and

blockchains [4, 33, 60, 61]. As network failures occur less frequently

than protocol-level errors like CRC checks, operating under the

assumption that the network failures that occur can be masked by

redundancy does not substantially affect our system’s availability.

Improvements. LOWI introduces important algorithmic improve-

memts with respect to classical synchronous consensus algorithms,

e.g., by Lynch [57] in which processes disseminate 𝑛2 messages

per round and different correct processes might decide in differ-

ent rounds. Nano-consensus handles failures in hardware and can

tolerate up to 𝑛 − 1 failures of the 𝑛 endhosts, showcasing how

re-architecting services considering modern network capabilities

can achieve optimality in both message complexity and resilience.

Our prototype can process packets at network line-rate, achieving

1-microsecond latency for a consensus decision – unprecedented

to our knowledge. It also handles leader failures in 2µs and can

achieve a server response time of 1.03µs when used to implement a

simple SMR application, respectively 30× and 3.82× lower latency

and 4.8× higher throughput than Waverunner [10] – the fastest

FPGA-smartNIC SMR engine. Nano-consensus also outperforms

software implementations and is deployed on modern SoC + FPGA

off-path smartNICs that can be connected to a server out-of-the-

box, without affecting the host.

Contributions. After presenting background information in § 2

this paper makes the following contributions:

§ 3 We propose the design of Nano-consensus, a novel coordi-

nation engine operating as fast as the underlying network.

§ 4 We introduce a new quorum-less consensus algorithm using

practical synchronous interaction supported by our system.

Table 1: Different percentiles of worst-case latencies mea-
sured over 40 days (50th corresponds to the median) in µs.

50th 99th 99.99th 100th

Nano-consensus 1.41 1.45 1.45 1.48

RDMA 3.15 3.93 8.18 144.78

AF_XDP 13.54 29.03 51.77 170.57

UDP 13.48 72.07 165.04 996.65

§ 5 We outline the implementation of Nano-consensus on Al-

tera’s F2000X-PL [37] infrastructure processing unit (IPU).

§ 6 We empirically evaluate our prototype in terms of interac-

tion stability, performance, and failure recovery in a SAP

datacenter. In short, Nano-consensus outperforms state-of-

the-art hardware and software solutions, e.g., respectively

reducing latency by 3.82× and 5.3× and increasing goodput
by 4.8× and 12×. We use Nano-consensus to implement

SMR which we integrate into a key-value store, providing

strong consistency without compromising native perfor-

mance.

§ 7 puts Nano-consensus into perspective. § 8 contrasts it with

related work. § 9 concludes with final remarks.

2 BACKGROUND AND MOTIVATION
2.1 The rise of programmable network devices
From the end of Dennard scaling [44] over a decade ago, processor

design has shifted from increasing clock speed to increasing par-

allelization. Building upon this, another more recent trend shows

drastic change of datacenter hardware towards more specialized ar-

chitectures, creating end-to-end heterogeneous systems optimized

for specific workloads [79]. In this ecosystem, programmable net-

work devices have arisen to enable offloading of custom logic to both

the core of the network (e.g., programmable switches [47]) and end-

hosts (smartNICs [84]). Among the latter devices, FPGA-smartNICs

offering full-fledged hardware customization have become widely

available in the market and in the cloud, with major providers such

as Alibaba [9], Amazon [12] and several others [15] exposing them

to application developers. Nano-consensus exploits the design of

Altera’s infrastructure processing unit (F2000X-PL) [37], using the

on-board FPGA to implement a high-performance consensus pro-

tocol, as in related works [10, 39].

2.2 Accelerating consensus in datacenters
Consensus is the problem of reaching an agreement amongmultiple

processes – often regarded as the most important in distributed

systems [83]. Its long research history has produced countless algo-

rithms which are at the heart of critical datacenter services, namely

state machine replication (SMR), which ensures that a replicated

system is available and consistent even if some servers fail. This

is typically achieved by establishing a majority quorum of size

𝑓 + 1 where 𝑓 is the maximum number of tolerated failures and

𝑛 = 2𝑓 + 1 is the minimum number of replicas needed. Estab-

lished quorum-based consensus algorithms such as Paxos [50] and

2

Nano-consensus: ultra-fast, quorum-less coordination on the wire

(To appear at ACM Symposium on Cloud Computing 2025)

Raft [64] ensure that a system is safe and live in the partially-

synchronous model where messages have to be eventually deliv-

ered (i.e., can be arbitrarily delayed until a global stabilization time).

These guarantees come at the cost of increased communication

complexity. In widely adopted variations of Paxos and Raft, a de-

cision can be taken only as quickly as a quorum round-trip al-

lows. This performance overhead is often so high that practical

systems loosen consistency guarantees, (e.g., Redis default replica-

tion uses best-effort broadcast [70]). To address the problem, state-

of-the-art solutions exploit kernel bypass techniques to reduce

packet processing overhead and accelerate consensus. These tech-

niques include RDMA [7, 31, 40, 42, 67], DPDK [48], eBPF XDP [86]

and custom network stacks [41, 46]. In this context, few emerg-

ing consensus implementations with software/FPGA-smartNIC co-

design [10, 14, 36, 39] offer significant performance improvements

compared to software-only counterparts. Besides increased per-

formance, we show how FPGA-smartNICs offer extremely stable

and predictable processing times [73] and have a negligible im-

pact on tail-latency compared to sources of interference at the host

(cf. § 6.2).

3 DESIGN
Nano-consensus provides a novel uniform consensus and replica-

tion engine designed for a cluster of FPGA-smartNICs in a datacen-

ter.

3.1 System model
For a long time, all distributed systems have been communally

considered to be asynchronous, i.e., devoid of upper bounds on

communication and processing delays, confounding all kinds of

setups including local-area vs wide-area deployments, wired vs

wireless communication, stationary vs mobile hosts, etc. There

have been significant improvements on all fronts since, and more

differentiation between setups. Several systems have thus started

to go against that common wisdom including

• distributed datacenter services, e.g., reliable failure detec-

tors [72], low-latencymessaging systems [41]which achieve

bounded interaction in software through complex OS instru-

mentation, priority networking, and traffic engineering;

• disaggregated memory (DM) replication frameworks as-

suming the process fail-stop model [76], which implies per-

fect failure detection and thus synchrony, as well as reliable

networks [32, 51, 53, 87];

• recent works [4, 33, 60, 61] on distributed process coor-

dination in the context of Byzantine failures [49] which

(similarly to DM works) take upper time bounds for com-

modity hard- and software as a given without introducing

any system support to enforce these assumptions, and dis-

regard network security concerns like (distributed) denial

of service attacks that one could expect with such security-

sensitive deployments;

• replicated variants of widely-used distributed applications

such as Kafka [1], Redis[70], and PostgreSQL [2].

Nano-consensus goes a step further by fully exploiting network

hardware support to actively clamp down on nondeterminism that

Followers
Host

Clients

SoC
Control

SW

FPGA

Consensus engine

App.

Leader
HostSoC

Control
SW

FPGA

Consensus engine

App.

Network
PCIe

Figure 1: Nano-consensus architecture acrossmultiple nodes.

SoC
DMA

Physical interfaces (PHY)

FIFO

Packet generator
Packet
parserConsensus

core

Host
DMA

Packet processor (PP)
1

2 3a3b3c
4b

4a

5

6

Figure 2: Data flow through the hardware modules of the
consensus engine.

can hamper upper time bounds, in the context of benign pro-

cess crash failures. Unlike current synchronous software frame-

works [41, 72], which need disruptive, complex and error-prone OS

configurations risking to compromise the integrity of claimed syn-

chrony, Nano-consensus achieves better performance, determinism

and usability by running in a self-contained module on widely-

available FPGA-smartNICs. Tab. 1 shows that hardware reaches

2 orders of magnitude better stability in our long-running bench-

marks (cf. § 6 for setup). In short, Nano-consensus 1. runs as a

core coordination service on highly precise FPGAs of smartNICs

to achieve timely guaranteed process response times, 2. leverages

traffic engineering and priority scheduling and queuing for entirely

avoiding packets drops due to congestion thus ensuring timely pre-

dictable packet delivery, and 3. uses redundant communication for

shielding remote process interaction from transient network link

or switch failures. As a consequence, Nano-consensus can rely on

low, timely bounded response times for its own processes and on

timely bounded reliable (multicast) communication between them.

Note that other processes execute and communicate as normal,

and priorities ensure that network resources are not lost in absence

of actual Nano-consensus traffic. Nano-consensus interaction is set

up through a controller which is not a limitation for the targeted

service and respective applications, as these are typically long-

running services such as key-value stores.

3.2 Architecture
System overview. Fig. 1 shows Nano-consensus’s architecture in

a typical multi-node deployment. A node can be either a leader or

a follower, with only one leader being present at any time. Dur-

ing normal operation, requests from clients are forwarded to the

leader which starts a consensus instance and communicates with

3

Davide Rovelli, Christian Faerber, Graham McKenzie, Ali Pahlevan, Sina Darabi, Patrick Jahnke, and Patrick Eugster

the followers through the datacenter network. Our system is fault-

tolerant and ensures that a new leader is elected in case the old one

is faulty. Each node executes an exact replica of Nano-consensus

and is divided into three sub-systems with separate computational

units: a host server, an system on a chip (SoC) and an FPGA. The

latter two are connected via peripheral component interconnect

express (PCIe) and physically placed inside an off-path smartNIC,

which is itself attached to the host server via PCIe. Nano-consensus

core logic is the consensus engine, which is entirely offloaded to

the FPGA hardware and directly attached to the network. The SoC

contains a control software layer which allows for dynamic recon-

figuration and monitoring of the consensus engine. Applications

using Nano-consensus are running on the host in isolation, only

receiving the outcome of a consensus instance. This architecture

is ideal to ensure separation of concerns, leaving the host CPU

free from costly packet processing. However, it could be adapted to

on-path smartNICs (e.g. FPGA only, no SoC) and other card designs

with minor modifications.

Consensus hardware engine. Fig. 2 shows a more detailed view

of the consensus engine, outlining its components and a sample

data flow. Incoming packets are sent from the physical interfaces

to the programmable packet processor (PP) 1 , which provides

layer 2 and layer 3 switching functionality. When the PP matches

Nano-consensus packets immediately trigger a notification to the

consensus core module 2 , needed for the correct functioning of the

consensus algorithm. The PP then routes packets to one or more

modules based on the Nano-consensus control settings and the

payload content. One possible path is through the packet parser 3a ;

the relevant information is stripped and sent to the packet generator,

which assembles a new packet with software-configurable headers

+ payload and queues it in the FIFO egress 4a . This data path is

executed exclusively in hardware, enabling packet processing and

consensus logic at line rate. The second possible path is through

the SoC: the PP forwards packets to the control software 3b which

processes and queues them in the egress FIFO queue 4b . This

mode enables operation when the hardware path is switched off,

and is particularly useful for batching and intermittent operations.

The third data path directly forwards packets to the host either to

propagate the result of a consensus instance to the application or

as a passthrough for generic packets 3c . Finally, 5 the consensus

core triggers send notifications at regular intervals, dequeueing

packets from the FIFO queue, passing them to the PP and sending

them to the wire 6 . This rate limiting functionality is core to our

consensus algorithms in § 4.

Communication. Nano-consensus uses UDP with IP multicast

for communication, combined with several other techniques to in-

crease reliability. Packets are either created in software and piped

to the egress FIFO queue or a base packet is pre-filled and written

to the FPGA memory to be modified by the packet generator. Each

process participating in consensus can belong to groups identified

by unique multicast addresses, where processes can dynamically

join/leave. UDP greatly simplifies hardware complexity compared

to a TCP stack and avoids re-transmission overhead which would

increase jitter, hampering interaction stability. Nano-consensus

NIC

Rate
limiter

Switch

Nano-consensus
packet
Other packet

Consensus request
Dropped packet

Priority
queues

Figure 3: Nano-consensus sample communication in a sec-
tion of the network. Consensus requests from clients and
other packets can be dropped while Nano-consensus makes
its packets never exceed network capacity.

rate-limits traffic inside multicast groups to prevent packet drops-

due to congestion which, alongside redundant links to cater for

several network failures, make the probability of packet loss so

low that it can be considered negligible for realistic uptimes, as

discussed shortly.

3.3 Stable interactions on network hardware
We substantiate how stable interactions (intended as communica-

tion + processing latency) can be achieved inside datacenters by

exploiting the predictability of programmable network hardware,

leading to reliable, low upper time bounds on message delivery

(>100× smaller than standard software configurations, cf. Tab. 1).

Deterministic processing in network hardware. The traditional

network stack is notoriously a bottleneck for high-throughput ap-

plications, leading to poor, unpredictable packet processing latency.

A large number of software approaches propose optimized data

paths [41, 46, 85] and scheduling policies [28, 58] to mitigate this

issue, achieving very low latency below some 99.𝑥 th percentile or

claiming upper time bounds on communication for a specific sys-

tem setup [41]. Even if to a smaller extent, such systems still suffer

from consequences of the many sources of interference at the end-

host [41], causing costly context switches and related latency spikes.

Nano-consensus overcomes software unpredictability by offloading

all latency-critical logic to custom hardware on FPGA-smartNICs

which allows direct access to packets from the wire, bypassing

interference otherwise induced by resource contention in the PCIe

bus and OS. The resulting custom circuit is dedicated exclusively to

processing Nano-consensus packets as soon as they arrive, leading

to ultra-low, predictable, stable latency. Low-jitter processing is also

exhibited by similar hardware algorithms [10, 39] which, however,

focus only on low latency and use it to accelerate Zab [45] and

Raft respectively. A major limiting factor in FPGA-smartNICs algo-

rithms is the frequency at which the hardware can deterministically

process packets. In Nano-consensus this is given by the consensus

core module synthesised on Altera F2000X-PL which can handle

up to 122 million packets per second (Mpps), bandwidth which is

largely sufficient to saturate 100Gbps networks and beyond.

Controlled priority traffic for zero-congestion. The other cause of

unpredictable communication latency peaks and packet drops is

4

Nano-consensus: ultra-fast, quorum-less coordination on the wire

(To appear at ACM Symposium on Cloud Computing 2025)

congestion due to traffic bursts exceeding network capacity. Fig. 3

shows how Nano-consensus prevents congestion by using traffic

engineering (TE) techniques to configure the network, while other

packets sent through the usual best-effort path where they can be

dropped or delayed. In short, we reserve highest-priority queues in

the hops connecting Nano-consensus nodes and apply rate limiting

at the NICs through the consensus core module (see Fig. 2). If the

input frequency of consensus requests coming either from clients or

the SoC is higher than the rate limiter allows, packets are dropped

before starting a new consensus instance. We rely on client re-

transmission for such cases. When requests go through the leader

node, they are multicast to the followers via highest-priority queues

at a rate which is pre-fixed below network capacity. Our TE ap-

proach also limits aggregation of multiple flows that might overfill

queues, in case non-fully overlapping Nano-consensus groups are

deployed. This is in practice achieved by decreasing the frequency

of the rate limiter of every node, as in previous work [30, 41, 72].

Scalability. Our system can also scale out without downtime

providing very strong availability (see § 6.4) since initialization

(TE setup and state transfer) can take place in the background (see

§ 5.2). Multiple applications can use a single Nano-consensus mod-

ule given they share the same set or a subset of processes, with the

only limit being rate limiter. For different overlapping sets of pro-

cesses, applications are required to use separate Nano-consensus

modules (one per set), which can be co-located on the same FPGA

up to ∼100 modules with additional multiplexing logic.

Redundancy and safe exit for network failures. If unhandled, net-

work link or switch failures could compromise interaction stability

and make a remote process falsely suspect a failure of the sender.

This in turn could affect the consensus algorithm’s safety (cf. § 4) if

network failures partially affect Nano-consensus’s multicast (e.g.,

a link fails and only a subset of remote processes receives a packet

while others suspect the sender to have failed). Nano-consensus

exploits physical redundancy, commonly available in datacenter

network topologies, e.g., fat-trees, to tolerate a number of network

failures. Since Nano-consensus nodes send exact copies of a packet

over every redundant multicast tree, they can detect a network fail-

ure when they receive a smaller number of packets than the number

of trees, e.g., receiving only one packet with a twofold redundancy.

Once a network failure detection occurs, all Nano-consensus nodes

employ a safe exit, i.e., they simply stop processing consensus mes-

sages, to prevent additional network failures from causing false

leader suspicions. Nano-consensus can be additionally set to use

network recovery mechanisms introduced in F10 [56], Hydra [18],

and FiDe [72] to quickly establish alternative redundant paths.

Reliability of stable interactions in perspective. Predictability of

modern network devices alongside established queuing engineering

techniques make the probability of a message being lost or delayed

beyond a conservative upper time bound so low in practice that it

can be considered negligible. In our extensively tested setup (§ 6.2),

this probability is 8.7×10−12 in theworst case, i.e., once every 40 days
with an average throughput of 400Mbps. As discussed, multiple

network failures affecting all redundant paths at the same time

can break synchronous interactions. However, this is extremely

unlikely in practice: recent estimates [72] based on popular real-

world network failure statistics [29] (section C) give a worst-case

probability of any two link or switch failures to occur once every

6 years in a 3-tiered fat-tree topology. Also, inconsistencies to the

consensus algorithm caused by multiple simultaneous failures or

delays occur only if these manifest in specific combinations (further

reducing probability of a safety violation) and can be prevented by

deployment, as we discuss in § 4.2. To put things into perspective,

TCP – widely regarded as reliable and used by several systems for

critical coordination as such (e.g. Zookeeper [35]) — has a higher

probability of a packet corruption going undetected. A popular

study [77] on a smaller sample base than in our experiments reports

that “the Ethernet CRC + TCP checksum will fail to detect errors

for roughly 1 in 16 million to 10 billion packets” (10
−10

probability

in the best case, e.g., once every 2.9 days with an average throughput

of 400Mbps), with recent real-world cases being reported [80, 81].

4 QUORUM-LESS OPTIMAL CONSENSUS
This section outlines the algorithm behind the consensus core mod-

ule (Fig. 2). Unlike the vast majority of classical and modern consen-

sus algorithms adopted in real-world deployments, Nano-consensus

does not require a majority quorum of processes to operate, lead-

ing to a simple solution with optimal message complexity. This

novel approach is made possible by exploiting upper time bounds

of Nano-consensus’s system-supported stable interactions inside

the datacenter (cf. § 3.3).

4.1 Reliable sychronous broadcast (RSBCAST)
Properties. We define the primitive RSBCAST (which we use in

Alg. 3) to denote Nano-consensus’s communication mechanism

using timely interactions, IP multicast, redundancy and safety back-

stop. The primitive has an homonymous rsbcast downcall, deliver

and net-fault upcalls. The interaction latency between send and

recv events has upper time bound Δ𝐼 + Δ𝐷 , i.e., the sum of the

maximum processing and communication latency (Δ𝐼) and the max-

imum bounded clock drift (Δ𝐷) between any two nodes. RSBCAST

has the usual properties of uniform reliable broadcast (cf. [16])

plus an additional property that messages which are rsbcast are

delivered within Δ𝐼 + Δ𝐷 .

rsbcast (Alg. 1). The sender sends a packet to every redundant

IP multicast group𝐺𝑖 ∈ G; these groups correspond to disjoint trees
connecting the same set of Nano-consensus nodes. A receiver starts

a timer once it receives the first packet: if less than |G| packets
arrive within Δ𝐼 + Δ𝐷 , it means that either a network failure or

packet drop has compromised the reliability of the channels. In

that case (line 12-13), the upper layers are notified through the net-

fault upcall. Otherwise, when a receiver recvs a message from all

redundant multicast trees, RSBCAST safely delivers the message.

The correctness of RSBCAST’s uniform delivery is probabilistic

as a delay or |G| network failures could violate synchrony and

potentially affect safety. We show how this is extremely unlikely

in our system (cf. § 1,§ 3.3,§ 6.2) and discuss how only certain

combinations of failures impact the correctness of consensus in the

next section.

5

Davide Rovelli, Christian Faerber, Graham McKenzie, Ali Pahlevan, Sina Darabi, Patrick Jahnke, and Patrick Eugster

Algorithm 1: Reliable sychronous broadcast (RSBCAST)

1 G ← {𝐺1,𝐺2 ...𝐺𝑛} // redundant multicast groups

2 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑 ← ∅
3 to rsbcast (𝑚):
4 foreach 𝐺𝑖 ∈ G do
5 send (𝑚) to 𝐺𝑖

6 upon recv (𝑚) from 𝐺𝑖 :

7 if 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑 = ∅ then
8 start (𝑡𝑖𝑚𝑒𝑟,Δ𝐼 + Δ𝐷)
9 if 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑 = G then
10 deliver (𝑚)
11 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑 ← 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑 ∪ {𝐺𝑖 }

12 upon timeout (𝑡𝑖𝑚𝑒𝑟):
13 net-fault

4.2 Consensus core: LOWI
Nano-consensus’s core engine is optimized to execute multiple

consensus instances in series which can be easily used to implement

state machine replication (SMR), i.e., the most common use case for

consensus. We first specify our consensus algorithm dubbed one-

way imposition (OWI) in Alg. 2, then introduce its looped variant

for SMR in Alg. 3, dubbed looped one-way imposition (LOWI).

Properties. We define the uniform consensus specification below.

The primitive has a propose downcall and decide upcall. OWI

satisfies the following properties:

Validity: If a process calls decidewith value 𝑣 , then 𝑣 was proposed

by some process.

Integrity: No process does decide twice.

Termination: Every correct process eventually does decide some

value.

Uniform agreement: No two processes decide different values.

We assume that proposed values are distinguishable, e.g., rep-

resenting requests or messages with unique identifiers, hence pre-

venting duplicate delivery. Like in § 4.1, the upper time bound Δ𝐼

denotes the maximum interaction latency between any two nodes.

Furthermore, all processes start within a fixed time Δ𝑊 which is

the initial synchronization time. We discuss how synchronization

is implemented in practice in § 5.2. All handlers are assumed to

execute uninterrupted; if multiple handlers are enabled at the same

time, they are triggered in a fair manner.

OWI (Alg. 2). At initialization, every process is assigned an id

from 1 to𝑛 to establish a hierarchy, with the leader being the process

with the smallest id (line 1) and other processes being followers.

We use the variable 𝑠𝑒𝑙 𝑓 to refer to the process id of the executing

process. When the leader is correct, it uses rsbcast to reliably

disseminate a value chosen deterministically (with det()) from the

𝑝𝑟𝑜𝑝𝑜𝑠𝑎𝑙𝑠 set (lines 4-7). All processes decide on the value imposed

by the leader (lines 19-20). Note that a leader may or may not have

received proposals sent from other processes (line 8) depending

whether it recvs them before starting to propose. This does not

affect consensus properties since the 𝑝𝑟𝑜𝑝𝑜𝑠𝑎𝑙𝑠 set contains at least

Algorithm 2: One-way imposition (OWI). Uses rsbcast.

All processes call propose within a fixed time window Δ𝑤 .

1 𝑙𝑒𝑎𝑑𝑒𝑟 ← min (𝑃)
2 𝑝𝑟𝑜𝑝𝑜𝑠𝑎𝑙𝑠 ← ∅
3 𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ← ⊥
4 to propose (𝑣):
5 𝑝𝑟𝑜𝑝𝑜𝑠𝑎𝑙𝑠 ← 𝑝𝑟𝑜𝑝𝑜𝑠𝑎𝑙𝑠 ∪ {𝑣}
6 if 𝑠𝑒𝑙 𝑓 = 𝑙𝑒𝑎𝑑𝑒𝑟 then
7 rsbcast (det (𝑝𝑟𝑜𝑝𝑜𝑠𝑎𝑙𝑠)) // pick deterministically

else
8 send (𝑣) to 𝑙𝑒𝑎𝑑𝑒𝑟
9 start (𝑡𝑖𝑚𝑒𝑟,Δ𝑊 + Δ𝐼 + Δ𝐷)

10 upon timeout (𝑡𝑖𝑚𝑒𝑟) and 𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = ⊥:
11 𝑃 ← 𝑃 \ 𝑙𝑒𝑎𝑑𝑒𝑟
12 𝑙𝑒𝑎𝑑𝑒𝑟 ← min (𝑃)
13 if 𝑠𝑒𝑙 𝑓 = 𝑙𝑒𝑎𝑑𝑒𝑟 then
14 rsbcast (det (𝑝𝑟𝑜𝑝𝑜𝑠𝑎𝑙𝑠))

else
15 send (𝑣) to 𝑙𝑒𝑎𝑑𝑒𝑟
16 start (𝑡𝑖𝑚𝑒𝑟,Δ𝑊 + Δ𝐼 + Δ𝐷)

17 upon recv (𝑣):
18 𝑝𝑟𝑜𝑝𝑜𝑠𝑎𝑙𝑠 ← 𝑝𝑟𝑜𝑝𝑜𝑠𝑎𝑙𝑠 ∪ {𝑣}
19 upon deliver (𝑣):
20 if 𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = ∅ then
21 decide (𝑣)
22 𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ← 𝑣

23 upon net-fault (𝑡𝑖𝑚𝑒𝑟):
24 qit

the leader’s value (preserving Validity) and once a value is proposed,

rsbcast guarantees that it is delivered by all correct processes

within Δ𝐼 . The timeout of Δ𝑊 + Δ𝐼 + Δ𝐷 (line 9) ensures that, if

the leader is correct, every correct process receives its imposed

message through rsbcast before triggering leader election (lines

10-12). If the leader fails before triggering rsbcast, all processes

will deterministically elect the next leader in the new round (i.e. at

timeout, lines 10-12). The algorithm proceeds until at least 𝑛 − 1
timeouts (i.e. rounds) in the case 𝑛−1 failures occur and the process
with the largest id is the only correct process. Processes safely quit

if rsbcast signals a network fault (net-fault) since they cannot

know whether all processes have received the leader’s decision.

LOWI (Alg. 3). The full algorithm runs a series of synchronized

(within Δ𝑊) consensus instances, takes reqests from clients, pro-

poses them through OWI, and stores them into the 𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑠 log.

Processes take reqest values asynchronously and store them into

the 𝑝𝑒𝑛𝑑𝑖𝑛𝑔 variable. In every synchronous round of the loop, pro-

cesses check whether the current consensus instance has ended

with a decision through the 𝑐𝑖𝑛𝑠 and 𝑙𝑖𝑛𝑠 variables, which respec-

tively indicate the current consensus instance and the last consensus

6

Nano-consensus: ultra-fast, quorum-less coordination on the wire

(To appear at ACM Symposium on Cloud Computing 2025)

Algorithm 3: Looped one-way imposition (LOWI). Uses

OWI. All processes start within a fixed time window Δ𝑤

1 𝑝𝑒𝑛𝑑𝑖𝑛𝑔← ∅
2 𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑠 ← []
3 𝑐𝑖𝑛𝑠 ← 0 // current consensus instance

4 𝑙𝑖𝑛𝑠 ← 0 // last consensus instance with a decision

5 to reqest (𝑣):
6 𝑝𝑒𝑛𝑑𝑖𝑛𝑔← 𝑝𝑒𝑛𝑑𝑖𝑛𝑔 ∪ {𝑣}
7 upon loop and 𝑐𝑖𝑛𝑠 = 𝑙𝑖𝑛𝑠:

8 𝑐𝑖𝑛𝑠 ← 𝑐𝑖𝑛𝑠 + 1
9 if 𝑝𝑒𝑛𝑑𝑖𝑛𝑔 ≠ ∅ then
10 propose (𝑣) | 𝑣 ∈ 𝑝𝑒𝑛𝑑𝑖𝑛𝑔
11 𝑝𝑒𝑛𝑑𝑖𝑛𝑔← 𝑝𝑒𝑛𝑑𝑖𝑛𝑔 \ {𝑣}

else
12 propose (⊥) // heartbeat value

13 upon decide (𝑣):
14 if 𝑣 = ⊥ then
15 𝑐𝑖𝑛𝑠 ← 𝑙𝑖𝑛𝑠 // no decision, rerun this instance

else
16 𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑠 [𝑐𝑖𝑛𝑠] ← 𝑣

17 𝑙𝑖𝑛𝑠 ← 𝑐𝑖𝑛𝑠 // go to next instance

18 uponqit:

19 exit loop

instance in which processes decided (line 7). Note that OWI guar-

antees that all decide in the same round even in the occurrence

of failures, preserving synchronization across multiple consensus

instances. In a “proposal” round, processes either propose a value

from the 𝑝𝑒𝑛𝑑𝑖𝑛𝑔 queue, or propose a heartbeat value (lines 7-12)

in case there are no pending 𝑝𝑟𝑜𝑝𝑜𝑠𝑎𝑙𝑠 . This is a key mechanism

preventing non-leader nodes to time out on correct leaders. As a

consequence, processes might decide heartbeat values, in which

case LOWI makes sure to repeat the same consensus instance (lines

13-15). Decisions of values coming from client requests are instead

added to the 𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑠 log, and the algorithm moves on with the

next instance (lines 16-17). Note that Processes exit the loop when

OWI calls qit in consequence of a net-fault.

Correctness. For Validity, OWI ensures that processes decide

values from the leader’s 𝑝𝑟𝑜𝑝𝑜𝑠𝑎𝑙𝑠 set (Alg. 2, line 5). In LOWI, these

can be either heartbeat values (⊥) or values previously proposed.

Only the latter are stored in the 𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑠 log (Alg. 3, lines 14-15).

Integrity is guaranteed by line 20 in Alg. 2. Regarding Termination,

the timeout mechanism in OWI ensures that a correct leader will

propose within 𝑛 − 1 rounds at most. To show Uniform agreement

we argue that only one process at any time can rsbcast, i.e., there

can only be a leader for every consensus instance. This is ensured

by the timing guarantees of our system, namely upper-bounded

interaction latencyΔ𝐼 amongNano-consensus nodes, and the initial

synchronization window Δ𝑊 . The timeout of Δ𝐼 +Δ𝑊 (Alg. 2, line

9), and the reliability of rsbcast ensure that either all processes

deliver within a given time before the timeout, or the sender has

crashed hence the message will never be received.

Complexity and optimizations. OWI solves consensus in 1 mes-

sage delay in failure-free executions, but requires initial synchro-

nization to make sure all replicas start within Δ𝑊 , which in practice

consists in at least another message delay. LOWI mitigates this by

synchronizing nodes only once at the beginning of the consensus

series, then maintaining synchronization by running back-to-back

consensus instances. This is the key mechanism to bridge asynchro-

nous client requests with efficient synchronous algorithm execution,

using heartbeats to maintain synchronization when requests are

delayed. OWI is more efficient than classical synchronous consen-

sus by Lynch [57] in which processes disseminate 𝑂 (𝑛2) messages

per round and different correct processes might decide in different

rounds, not allowing for our “looped” optimization. To mitigate

excessive heartbeat traffic, 𝑝𝑒𝑛𝑑𝑖𝑛𝑔 proposals can be accumulated

by setting a loop period higher than the incoming proposal rate

and vice versa when a large number of proposals need to be “con-

sumed”. While likely only the leader ends up proposing its values

in OWI, this is a common feature of most consensus/SMR algo-

rithms [7, 10, 31, 86] and is mitigated by directing requests only to

the leader. det in Alg. 2 chooses non-heartbeat values for efficiency.

rsbcast and multiple network failures. rsbcast mitigates net-

work failures with redundancy, leading to an extremely low proba-

bility (at worst once every 6 years, cf. § 3.3) of any multiple network

failures to affect all redundant trees. In reality, the actual probability

of such failures affecting consensus safety is even lower: only net-

work failures which create network partitions (whether transient

or not) are critical. Furthermore, this risk is null when redirecting

client request to a leader and not to replicas which is a common de-

ployment adopted in Paxos/Raft -based algorithms [7, 10, 48, 86]. As

long as the leader continues its operation, no requests are forwarded

to other replicas, hence preventing uniform agreement breach by

deployment.

5 IMPLEMENTATION
5.1 Development
We designed and implemented Nano-consensus on the F2000X-PL

Altera smartNIC [37], leveraging the on-board SoC and Intel Ag-

ilex 7 FPGA [6] for software/hardware co-design. The built-in PP

(refer to Fig. 2) was programmed to provide ingress packet classi-

fication and routing among the physical ports, the SoC, the host

and our custom hardware module. The latter was compiler onto the

board’s application stack acceleration framework (ASAF) module

and amounts to a total of 803 lines of code in System Verilog and

VHDL. Iterative testing for the RTL module was done with Mod-

elSim [63]. We developed the following software components to

complement the hardware module: a Rust CLI app for controlling

and monitoring (383 lines of code), PP Bash configuration scripts

(142 lines of code) and a high-performance thin layer in eBPF’s

XDP to provide application specific logs (412 lines of code).

7

Davide Rovelli, Christian Faerber, Graham McKenzie, Ali Pahlevan, Sina Darabi, Patrick Jahnke, and Patrick Eugster

 LOWI

HEARTBEAT
register

TIMEOUT
register

LOWI
counter

send
output
trigger

LEADER
counter

RST

RST
SW

SW

SW
ID

register

recv input trigger

Figure 4: Simplified circuit schematics of LOWI. “SW” labels
define components configurable from software.

5.2 LOWI system integration
Fig. 4 shows how LOWI is synthesized on the consensus core mod-

ule and interacts with the other modules via triggers. In the follow-

ing we describe how LOWI is integrated in our design on Altera

F2000X-PL FPGA-smartNICs. Please see § 3 for architecture details.

Initial synchronization. The start of the sequence simply consists

in a “start” message which the designated leader send to the follow-

ers in order to activate their receive input trigger, which resets and

start the LOWI counter. The timeout register is previously set to

at least double the maximum latency observed in the system plus

the maximum clock drift, i.e., the initial synchronization window

Δ𝑊 = Δ𝐼 , hence timeout duration > 2Δ𝐼 + 𝑑𝑟𝑖 𝑓 𝑡 . We rely on

modern FPGAs’ very robust clocks with negligible bounded drift

(as assumed by recent systems, e.g., [31, 41, 72]).

Main operation. After setting FPGA memory and registers from

software, clients send consensus requests to the leader node di-

rectly on the FPGA-smartNIC as typically done in other consensus

setups, e.g., Waverunner [10]. The on-board PP routes requests to-

wards the packet parser (cf. Fig. 2), which extracts the payload and

passes to the packet generator which prepares a propose packet

and enqueues it into the FIFO. Once the LOWI counter of the leader

triggers the next send signal (AND logic comparison among LOWI

counter, blue registers and heartbeat register in the circuit), the PP

is set to rsbcast the decision to the followers, the host DMA and

as well as replying directly to the clients with an “OK” response.

This ensures minimal server response latency since the packet has

to only do a loopback inside the FPGA. Packet reception at the

followers (recv) triggers LOWI, resetting its counter and prevent-

ing it from reaching the value of the timeout register previously

set from software. The packet is forwarded up the host DMA (i.e.,

via decide) without further processing. Note that the reception of

requests at the leader does not trigger a LOWI receive as it would

compromise the timeliness of the loop period. The LOWI counter

is reset after every successful send, creating the loop. Note that the

loop period (i.e., heartbeat register in Fig. 4) might be set as small

as the FPGA clock allows (∼8ns) order to keep multiple consensus

instances in flight for very high throughput.

Heartbeats and leader election. The LOWI circuit triggers a send

signal even if there are no incoming requests and the FIFO is empty.

In such case, a pre-filled, static heartbeat packet (⊥ in Alg. 3) is sent

instead from memory, ensuring that followers never timeout on

a leader that is still alive. Upon leader failure, the LOWI counter

in each follower hits the timeout value, outputting a signal which

increases the leader counter. This constitutes our deterministic

leader election, since we assign monotonically increasing ids to all

processes during the initial configuration. The follower with id =

leader id + 1 is elected as next leader and starts loop.

Flawless joining in state machine replication. New processes can

join an existing cluster as followers without disrupting an on-going

execution. At the start of a join procedure, a follower sets itself in

a “joining” state, enables the consensus engine, and starts logging

the decision values of the running consensus instances. In parallel,

the control software sends a request to any other node asking for

the current state and the latest consensus instance it has recorded.

After the state transfer, the new node will apply previously recorded

changes starting from 𝑐 + 1 and set itself as “active”. Before this

last step it might be necessary to increase the timeout value in

case the follower is “further away” than any other followers in

the group. This can be achieved by the software layer through a

new consensus instance. Reducing the timeout value would require

halting the system, but it is unlikely required since high timeout

values do not impact failure-free performance.

6 EVALUATION
We evaluate Nano-consensus by comparison with state-of-the-art

services and applications, addressing four research questions:

RQ1: How stable and reliable are Nano-consensus remote pro-

cess interactions?

RQ2: How well does Nano-consensus perform?

RQ3: What is the impact of failures and joins onNano-consensus

availability?

RQ4: How and by how much does Nano-consensus improve

real-world applications?

6.1 Methodology
Evaluation cluster. We implement and evaluate Nano-consensus

in a production datacenter of a major cloud service provider. The

evaluation cluster consists of 3 Altera F2000X-PL [37] attached

to 2 Dell R740 servers, each equipped with 2 Intel Xeon Gold

6138 at 2.00GHz (40cores, 80 threads) and running CentOS 8 [17].

F2000X-PL’s SoCs are equipped with Intel Xeon D-1736 CPUs at

2.30GHz (8 cores, 16 threads) running Rocky Linux 8.9[71]. For most

tests, we connect both 100Gbps QSFP28 ports of every F2000X-PL

to a 100Gbps TOR switch. To benchmark other applications, we use

Mellanox ConnectX-4 100 GbE [59] (making sure that bandwidth

is not limiting maximum achievable throughput), connected to the

same switch. For multi-switch evaluation we use an additional clus-

ter of 2 Cloudlab [26] xl170 servers, connecting their ConnectX-5

NICs to a number of Dell s4048 type switches, as outlined later.

Comparison. We compare Nano-consensus with three different

OS-bypass datapaths, namely FPGA-smartNICs, RDMA, and eBPF

XDP, chosen for their relevance and widespread adoption. For each

technology, we compare Nano-consensus with the following state-

of-the-art consensus systems:

8

Nano-consensus: ultra-fast, quorum-less coordination on the wire

(To appear at ACM Symposium on Cloud Computing 2025)

Figure 5: Maximum interaction (communication + process-
ing) latency over 40 days (115 billion packets).

Waverunner [10], hardware-accelerated Raft on Alveo U280[11]

FPGA-smartNICs, the fastest SMR module to our knowl-

edge;

Electrode [86], XDP-based consensus service used to implement

viewstamped replication [54];

Mu [7], a state-of-the-art RDMA-based consensus algorithm.

We also compare the integration of Nano-consensus into two

widely used applications: Redis [68], a distributed key-value store

and Zookeeper [35] against their native performance. For Redis, we

also compare against RedisRaft [69], an official module developed

by RedisLabs using Raft for SMR.

6.2 RQ1: interaction stability
Our first experiments evaluate stability and reliability of time bounds

on interaction latency, a core aspect of Nano-consensus’s design.

Long-running latency. This benchmark consists in running a sim-

ple ping-pong protocol between the leader and the two followers

and computing the worst leader-to-follower, one-way latency for

every round. We run our benchmark for 40 consecutive days collect-

ing measurements for a total of 115 billion packets, more than 650×
the amount of similar stability evaluations [41] and 56× the amount

used in a widely-cited TCP reliability study [77]. Nano-consensus

packets are sent at a constant throughput of ∼400Mbps through

Nano-consensus’s PP. For each packet, we log bothNano-consensus

latency and UDP software latency at the SoC, in order to show the

cost of traversing the network stack. We also evaluate latency of

RDMA Unreliable Connection (UC, UDP equivalent) and XDP XSK

sockets through the same ping-pong test, but using a much smaller

sample base of 10 million packets (giving them an advantage over

Nano-consensus). We use stress-ng [78] and iPerf [38] to generate

periodic spikes of maximum CPU and network utilization. Fig. 5

shows the results. Nano-consensus exhibits the lowest and the most

stable latency for 100% of the measured packets with an average

latency of 1.41µs and a maximum of 1.48µs and no packet loss. All

other approaches show a sharp increase in maximum latency at the

tail of more than 100×, indicating the limits of software approaches

beyond some 99.𝑥 th percentile, especially if we consider that they

were run for a fraction of the time only. This benchmark showcases

the interaction stability of modern datacenter network hardware,

which makes the probability of failure (breaking an upper time

bound) smaller than services that are widely considered reliable,

Figure 6: Interaction latency across multiple switches. Hori-
zontal dashes represent median values, whiskers 0.01th and
99.99th percentile latency, circles are outliers.

e.g., TCP’s detection of corrupted packets (TCP + Ethernet CRC

checksum, see § 3.3).

Multi-switch and packet loss. We also run two additional mi-

crobenchmarks in the CloudLab [26] setup to evaluate the stabil-

ity of hardware processing and Nano-consensus communication

layer in the core of the network. We manually reserve the highest-

priority queues in the switches and use Mellanox ConnectX-5 NIC

hardware timestamp [62] to evaluate the FPGA-smartNIC data-

path, which is equivalent to Nano-consensus timestamps in the

consensus engine. We use the previously mentioned ping-pong ap-

plications with varying network load generated with iperf3 [38].

For this experiment, the switches are connected in series with two

nodes connected at opposite ends, so a packet must traverse all

hops. Fig. 6 shows the effects on latency of scaling to 2, 3 and

4 switches under minimal network traffic. The figure confirms

Nano-consensus’s stability: each switch adds around 4µs latency,

respectively 10.5 ± 0.15µs, 14.4 ± 0.2µs and 19.6 ± 0.25µs average
with jitter (intended as max - min) within the error value. Other

technologies show much higher jitter in the order of hundreds of

µs. Interestingly, the average of RDMA and XDP is comparable or

even smaller than Nano-consensus, which can be explained by the

batching and interrupt coalescing adopted by the former two to

save the CPU from costly frequent interrupts, resulting in peaks

of latency followed by a long series of packet with latency that

is shorter than the wire speed. However, given their high jitter,

these approaches are unsuitable for practical synchrony. The sec-

ond microbenchmark (Fig. 7) compares packet loss with varying

network load between Nano-consensus path and the normal net-

work path depicted in Fig. 3, in the 4-switch topology. Here we can

observe the effect of highest-priority queue reservation and rate

limiting: normal traffic is dropped by the switches and endhosts

while Nano-consensus packets are never dropped.

6.3 RQ2: consensus performance
Our second set of benchmarks aims to evaluate latency of consen-

sus instances at increasing throughput with a traffic generator to

test the limit of our system. Since all compared approaches use a

leader-based consensus algorithm, we measure the latency from

when the leader accepts a propose request to when it decide as

9

Davide Rovelli, Christian Faerber, Graham McKenzie, Ali Pahlevan, Sina Darabi, Patrick Jahnke, and Patrick Eugster

Figure 7: Comparison of packet loss between
Nano-consensus packets and normal packets at increasing
network load. Both flows go through the same NICs
and switch. Thanks to rate limiting and traffic priority,
Nano-consensus packets are never lost, even when the
incoming traffic exceeds network capacity (120%).

well as the end-to-end latency at the client side for fair compar-

ison (compared approaches are evaluated in the same manner).

Clients send requests directly to the leader using small random

packets – 50B for Nano-consensus and Waverunner and 64B for

Mu and Electrode, disadvantaging the former two approaches for

total goodput (i.e. payload vs packet headers). The packets include

44B of Ethernet, IP and UDP headers, chosen for fair comparison

to Waverunner’s evaluation [10]. Unlike Mu and Electrode, we do

not deploy Waverunner due to the source code being unavailable.

Instead, we report Waverunner’s results from their paper [10], us-

ing an identical network setup, and only substitute the RTT of our

system, leaving the throughput as it is. We include one consensus

request per packet with minimal payload size, intentionally avoid-

ing client-side batching (which would trivially increase throughput

for all appreaches) to show the base performance of every approach.

Throughput and network utilization. Fig. 8 showsmedian through-

put results in terms of consensus instances per s. Nano-consensus

achieves 62.4 Mpps using the DPDK testpmd tool [25] with receive-
side scaling over 4 SoC cores enabled in F2000X-PL for high- perfor-

mance software reception. The value, limited to avoid packet loss

in software, is lower than Nano-consensus Nano-consensus’s core

processing rate (121Mpps), i.e. the theoretical bottleneck of the

system; fine-grained performance tuning of the DPDK testpmd
is likely to further increase software throughput [24] up to net-

work bandwidth saturation (100Gbps). Nano-consensus improves

over Waverunner, the fastest consensus system in literature, by

∼2.4×. With both systems using FPGA-smartNICs and only being

limited by the processing speeds of the hardware modules and

by the underlying network bandwidth, Nano-consensus’s perfor-

mance improvements come from its algorithmic advantage over

quorum-based approaches. Waverunner uses Raft which adds 𝑛 − 1
(vs 0 for Nano-consensus) acknowledgment messages for the leader,

dramatically impacting its bandwidth usage in the network which

Waverunner saturates at 1.25% goodput/single link utilization ratio,

as shown in Tab. 2. Nano-consensus achieves a strongly increased

goodput of 12% (∼4.8×) with only twofold network redundancy,

leaving additional room for 75.1 Gbps at the same rate, which could

be achieved with client-side or server-side batching by increas-

ing the payload by 150B (minus the additional Ethernet field –

7B preamble, 1B packet start delimiter and 12B inter-packet gap).

Software-only approaches exhibit similar results as Waverunner

Table 2: Maximum goodput achievable with relative network
utilization for small requests. We assume 2-level redundancy
for both approaches.

Packet size Maximum Leader
(44B header) goodput bandwidth

(200Gbps)

Nano-consensus 50B 2.99 Gbps 24.96%

Waverunner [10] 50B 1.25 Gbps 50%

Figure 8: Consensus performance measured at the leader.
Measurements at clients add an additional ∼40µs for every
approach due to client-server RTT.

since they are also using acknowledgements, and furthermore can-

not saturate the network bandwidth with small requests (Fig. 8)

since they limit software packet processing overhead with batching

in order to keep CPU utilization low.

Latency. Nano-consensus exhibits a constant median latency of

1.03µs (Fig. 8), limited by the loopback speed of F2000X-PL NIC

through our custom hardware module. It improves over by over

∼3.82× w.r.t. Waverunner’s constant latency, demonstrating the

stability of FPGA-smartNIC-based hardware processing. Additional

testing shows that packet sizes up to 1500B marginally increase

the processing latency by 10%, while the 99
th

percentile latency

is within 3% for hardware approaches. Mu and Electrode show

5.38× and 7.39× higher latency respectively and sharp increases

when approaching their throughput limit, following a “hockey stick”

pattern. For completeness, we performed the same measurements

from the client side to obtain the end-to-end latency from a client

perspective. Clients add an additional ∼40µs on average for all

approaches, corresponding to the RTT between the clients and the

leader in our setup (both connected to 1 TOR switch).

6.4 RQ3: fault tolerance and availability
We evaluate Nano-consensus’s fault tolerance by injecting failures

at the leader of a cluster, which results in a leader election round in-

volving no explicit communication; followers simply time out when

they stop receiving messages from the leader (data or heartbeats).

While follower failures do not cause downtime in any of the com-

pared approaches, a substantial gain of Nano-consensus is that it

tolerates 𝑓 = 𝑛−1 processes failures while compared quorum-based

approaches require 2𝑓 +1 processes, as shown in Tab. 3. We evaluate

the downtime impact of a new follower joining an existing cluster.

10

Nano-consensus: ultra-fast, quorum-less coordination on the wire

(To appear at ACM Symposium on Cloud Computing 2025)

Table 3: Leader election and downtime resulting from a new
follower joining an existing cluster. Slanted numbers are
taken from respective publications and blank values were
not addressed therein. Time values are in µs.

Tolerated Failover Downtime
failures latency on node

(50th/99th) join

Nano-consensus 𝑛 − 1 2/2 0

Consensus in a Box [39] ⌊𝑛−1
2
⌋ 60/60 2E5

Waverunner [10] ⌊𝑛−1
2
⌋ 1E6/1E6 2E5

uKharon [31] ⌊𝑛−1
2
⌋ 50/139

Our LOWI algorithm (Alg. 3) is designed for high-availability and

can flawlessly react to changes in the cluster, as discussed below.

Leader election. Unlike common solutions, our timeouts are op-

timal as they can rely on the stable latency (Δ𝐼 = 1.41µs) from the

communication layer and precision of the hardware sending rate

(𝑇𝐿𝑂𝑂𝑃 = 8ns), and therefore can be safely set at Δ𝐼 +𝑇𝐿𝑂𝑂𝑃 We

choose 2µs in our experiments (including a safety margin), achiev-

ing a 30× improvement against Consensus in a Box [39] and 25×
over uKharon [31], respectively the fastest hardware and software

solutions to our knowledge, as revealed by Tab. 3. Nano-consensus

also improves over Waverunner’s conservative timeout by 500000×.
However, we believe that Waverunner’s performance is very likely

to sustain more aggressive timeouts.

Follower joins. Another benefit of LOWI is that it enables fol-

lowers to join an existing cluster without disrupting the ongoing

operation. For this evaluation we use Nano-consensus to imple-

ment a basic SMR service which uses a leader to deterministically

order incoming requests, run a consensus instance with the request

number and writes it to a log. Tab. 3 shows that Nano-consensus

achieves 0 downtime thanks to the parallel state transfer strategy

described in § 5.2. Once again, this results in a substantial advantage

over quorum-based approaches which need to halt operations and

wait for a follower to synchronize its state with the leader (200ms

in Waverunner and Consensus in a Box evaluations).

6.5 RQ4: real-world applications
Our final sets of benchmarks analyzes Nano-consensus’s perfor-

mance as part of Redis and Zookeeper. We evaluate latency and

throughput from external clients connected to our 3-node cluster

via a TOR switch. As for previous benchmarks, all requests are

forwarded directly to the leader. For both applications, we build

custom sequential (i.e. blocking on server response) clients which

send Nano-consensus requests to the cluster, which our system

safely replicates. The leader then acknowledges the request to the

client and forwards to the respective hosts at the same time, allow-

ing the application to process requests in the background. We use

a thin XDP layer and receive-side scaling on the host to efficiently

process incoming requests and log them into in-memory maps. We

modify Redis and Zookeeper to read from these logs to process re-

quests and refer to these versions as Redis-NC and Zookeeper-NC

respectively. We evaluate only SET requests but not GET requests,

Figure 9: SET request latency and throughput of Redis and
Zookeeper with different replication algorithms and num-
bers of nodes. 𝑦-axis is logarithmic.

as all approaches would simply return the requested value, adding

no overhead to native performance.

Results. Fig. 9 depicts throughput (left) and latency (right) at

small scale 𝑛 = 1, 2, 3. (At larger scales the performance of com-

pared approaches degrades quickly.) Nano-consensus applications

outperform the native SMR approaches RedisRaft and Zookeeper

by at least 10× throughput and at least >11.6× lower latency. Per-
formance gains come from the fast hardware response directly

from the FPGA-smartNIC which avoids traversing the server net-

work stack, achieving improvements even on original Redis un-

replicated by 4.7× throughput and 11.6× latency. Both Redis-NC

and Zookeeper-NC show very close performance since they use the

same custom UDP clients. These have suboptimal packet processing

capabilities which limits maximum throughput to 846Kpps, leaving

a lot of performance on the table as shown by the results achieved

in § 6.3 with the DPDK test suite. Further engineering effort (e.g.

using DPDK, RDMA) could easily bring the performance up to tens

of Mpps as shown by several works [24, 28, 46]. The obtained re-

sults are a good representation of Nano-consensus benefits with an

average programming effort. In addition, note that the fault toler-

ance of Nano-consensus is increased, so for instance to be able to

tolerate 𝑓 = 2 failure(s) the performance of Nano-consensus-based

Zookeeper on 𝑛 = 3 nodes would have to be compared to that of

original ZooKeeper on 𝑛 = 5 (cf. Tab. 3).

7 NANO-CONSENSUS IN THE BIG PICTURE
WepositionNano-consensus in a broader context delineatingwhere

and how it should be used, its benefit-cost tradeoff and future work.

Application notes. Nano-consensus is designed for datacenters

and relies on network predictability, programmability, and speed. It

primarily targets highly available core services with high through-

put and low latency requirements, but can be also used as accelera-

tor to efficiently “consume” a large volume of accumulated requests

when latency is not a primary concern. The latter scenario allows

for high-level traffic scheduling based on network utilization, e.g.,

intermittent enabling of Nano-consensus engine to compensate

external, bursty traffic, as well as mitigating the overhead caused

11

Davide Rovelli, Christian Faerber, Graham McKenzie, Ali Pahlevan, Sina Darabi, Patrick Jahnke, and Patrick Eugster

by heartbeat messages. Nano-consensus is best used in combina-

tion with a high-performance packet processing software layer to

avoid throughput limitation (e.g., see UDP clients in § 6.5) or cause

unwanted packet loss. Several modern systems such as eRPC [46],

DPDK [24], or eBPF (see server-side software layers in § 6.3 and

§ 6.5) can easily reach 10Mpps per core, especially considering that

Nano-consensus takes away the send overhead of proposal mes-

sages. Additional engineering effort in implementing a batching

module aggregatingmultiple requests together as done byWaverun-

ner [10] would also greatly mitigate the pressure on the endhost.

Resource footprint. One of the main benefits of using smartNICs

is alleviating the burden on the host CPU. Nano-consensus takes

on packet processing and all consensus logic, leaving only asyn-

chronous reception to the host (i.e. which can be deferred at later

times hence relieved from latency and throughput requirements).

In terms of FPGA footprint, LOWI uses less than 1% of the available

resources in the F2000X-PL board, leaving room for 100 equiva-

lent modules available for scaling up. Nano-consensus’s highest-

priority queue reservation can be shared with when using other

concurrent high-priority services by decreasing Nano-consensus’s

sending rate. Moreover, explicit resources reservation is often in-

trinsic to the deployment of highly available core services[27, 88]

to avoid co-locating too many other communication-intensive pro-

cesses. The same applies for network redundancy, which is also

commonly available by default in datacenter network topology

(e.g., fat-tree). Benefits of redundancy and resource reservation can

easily outweigh the cost of resource reservation, as shown in § 6.3.

8 RELATEDWORK
Coordination with stable interactions. Traditionally, distributed

systems are designed assuming that messages can be arbitrarily de-

layed by the network and the packet processing stack. This common

belief is challenged by the rise of more programmable, precise, and

high-performance networks and endhosts [73, 74]. A number of sys-

tems assume stable communication and stable processing as a given

for, e.g., optimal weak failure detectors [8], leader election [75]. Sev-

eral recent works assume synchrony in wide-area scenarios with

Byzantine failures in the context of blockchains. BoundBFT [60]

investigates to what extent synchrony can be violated in practice

without hampering consensus correctness. AlterBFT [61] is a novel

BFT consensus protocol which assumes synchrony for short mes-

sages only, significantly improving latency compared to fully syn-

chronous protocols while retaining throughput and fault tolerance.

Unlike nano-consensus, these and other BFT algorithms [5, 33, 55]

assume a classical software stack without providing any concrete

underlying system to enforce such assumptions. Seminal work on

deterministic distributed processes was introduced by DDOS [34],

however with significant overhead in its remote process interac-

tion. X-Lane [41] introduces a communication layer relying on

programmable networks and process isolation, resulting in upper

time bounds in interaction which are used to accelerate a Raft-

based consensus service. However, this approach – inherited by

FiDe [72] for reliable failure detection – requires fine-tuning of the

OS which can be easily misconfigured affecting interaction stability.

Nano-consensus takes a step further by pushing logic to network

hardware, dramatically reducing interaction jitter and using it to

devise a custom consensus algorithms with optimal complexity.

Distributed algorithms on network hardware. Consensus in a

Box [39] is a seminal work which pushes Zookeeper Atomic Broad-

cast (ZAB) off the critical path by fully porting it to FPGA.Waverun-

ner [10], the most recent and fastest work to our knowledge, takes

a different approach and moves only the failure-free operations of

Raft onto FPGA-based smartNICs, leaving failover routines to the

software. Paxos in the NIC [14] proposes a high-level abstraction

to offload Paxos-like consensus algorithm on the NIC with quanti-

tative analysis to prove its benefits and an early-stage prototype

with limited evaluation. NanoPU [36] proposes a more generic dat-

apath for low-latency communication by a custom communication

channel which writes directly to the CPU registers, bypassing PCIe

bus and OS jitter sources. While the authors simulate their design

with Raft, NanoPU does not provide algorithmic novelty and does

not provide a physical implementation. Thanks to its novel design

on stable interaction and optimal algorithm (e.g., with respect to

classical synchronous consensus [57]), Nano-consensus fully ex-

ploits hardware properties and uses an optimal consensus algortihm

improving over Waverunner throughput, latency and availability.

Fast software packet processing. High tail-latency of a service can

impact client retention and cause loss of revenue [19, 20, 82]. This

led to the development of a plethora of systems which optimize tail-

latency for datacenter remote procedure calls through specialized

networking stacks at the endhosts [13, 21, 28, 46, 46, 52, 65, 66, 85].

These works achieve µs tail-latency through optimal endhost packet

processing but fail to prevent outliers beyond the 99.𝑥th percentile.

QJump [30] leads the way to achieve minimal, stable tail-latency in

networks but does not consider jitter at the endhost, leading to the

same issue. Nano-consensus exploits a custom hardware design on

FPGA-smartNICand reservation of priority queues in the network

to achieve ultra-stable interactions and server-response with 100th

percentile tail-latency of as low as 1.03µs, outperforming software

state of the art in latency, throughput and failover time.

9 CONCLUSIONS
We propose Nano-consensus, a hardware-supported consensus en-

gine which runs on FPGA-smartNICs. Unlike common approaches

accelerating existing algorithms, Nano-consensus exploits and sup-

ports the stability of network hardware to introduce a novel con-

sensus primitive which is efficient for series of consensus instances.

Nano-consensus provides optimal message complexity and can run

as fast as the underlying network allows with ns-scale latency,

outperforming state-of-the-art hardware and software consensus

implementation by 3.82× and goodput by 4.8×, substantially im-

proving availability upon failures.

ACKNOWLEDGEMENTS
This work was supported by Swiss National Science Foundation

grants #192121 and #197353, SAP grant DEDIC, Hasler Foundation

grant DEEDS, and Meta Research in Distributed Systems program.

12

Nano-consensus: ultra-fast, quorum-less coordination on the wire

(To appear at ACM Symposium on Cloud Computing 2025)

REFERENCES
[1] Apache Kafka Synchronous replication. https://cwiki.apache.org/

confluence/display/kafka/kafka+replication#:~:text=In%20primary-

backup%20replication%2C%20the,write%20to%20the%20remaining%20replicas.

Online; accesses 10-Jan-2025.

[2] Synchronous replication in postgresql. https://www.crunchydata.com/blog/

synchronous-replication-in-postgresql. Online; accessed 10-Jan-2025.

[3] IEEE 802.3. Ieee draft standard for ethernet amendment: Media access control

parameters for 800 gb/s and physical layers and management parameters for 400

gb/s and 800 gb/s operation. IEEE P802.3df/D3.0, July 2023, pages 1–286, 2023.

[4] Ittai Abraham, Dahlia Malkhi, Kartik Nayak, Ling Ren, and Maofan Yin. Sync

HotStuff: Simple and Practical Synchronous State Machine Replication. In 2020

IEEE Symposium on Security and Privacy (SP ’20), volume 1, pages 106–118, 2020.

[5] Ittai Abraham, Kartik Nayak, and Nibesh Shrestha. Optimal good-case latency

for rotating leader synchronous bft. In 25th International Conference on Principles

of Distributed Systems (OPODIS 2021), 09 2021.

[6] Agilex™ 7 FPGA and SoC FPGA. https://www.intel.com/content/www/us/en/

products/details/fpga/agilex/7.html. Online; accessed 14-Jul-2025.

[7] Marcos K. Aguilera, Naama Ben-David, Rachid Guerraoui, Virendra J. Marathe,

Athanasios Xygkis, and Igor Zablotchi. Microsecond consensus for microsecond

applications, November 2020.

[8] Marcos K. Aguilera, Carole Delporte-Gallet, Hugues Fauconnier, and Sam Toueg.

On implementing omega in systems with weak reliability and synchrony as-

sumptions. Distributed Computing, 21(4):285–314, 2008.

[9] Alibaba Cloud ECS. Deep Dive into Alibaba Cloud F3 FPGA as a Service Instances

. https://www.alibabacloud.com/blog/deep-dive-into-alibaba-cloud-f3-fpga-as-

a-service-instances_594057. Online; accessed 10-Jul-2025.

[10] Mohammadreza Alimadadi, Hieu Mai, Shenghsun Cho, Michael Ferdman, Peter

Milder, and Shuai Mu. Waverunner: An elegant approach to hardware acceler-

ation of state machine replication. In 20th USENIX Symposium on Networked

Systems Design and Implementation (NSDI 23), pages 357–374, Boston, MA, April

2023. USENIX Association.

[11] Xilinx alveo 280 product frief. https://www.xilinx.com/content/dam/xilinx/

publications/product-briefs/alveo-u280-product-brief.pdf. Online; accessed 14-

Jul-2025.

[12] Amazon EC2 F2 Instances. https://aws.amazon.com/ec2/instance-types/f2/. On-

line; accessed 10-Jul-2025.

[13] Adam Belay, George Prekas, Mia Primorac, Ana Klimovic, Samuel Grossman,

Christos Kozyrakis, and Edouard Bugnion. The ix operating system: Combining

low latency, high throughput, and efficiency in a protected dataplane. ACM

Trans. Comput. Syst., 34(4), dec 2016.

[14] Giacomo Belocchi, Valeria Cardellini, Aniello Cammarano, and Giuseppe Bianchi.

Paxos in the NIC: Hardware Acceleration of Distributed Consensus Protocols.

In 2020 16th International Conference on the Design of Reliable Communication

Networks DRCN 2020, pages 1–6, March 2020.

[15] Christophe Bobda, Joel Mandebi Mbongue, Paul Chow, Mohammad Ewais, Naif

Tarafdar, Juan Camilo Vega, Ken Eguro, Dirk Koch, Suranga Handagala, Miriam

Leeser, Martin Herbordt, Hafsah Shahzad, Peter Hofste, Burkhard Ringlein, Jakub

Szefer, Ahmed Sanaullah, and Russell Tessier. The future of fpga acceleration

in datacenters and the cloud. ACM Trans. Reconfigurable Technol. Syst., 15(3),

February 2022.

[16] Christian Cachin, Rachid Guerraoui, and Lus Rodrigues. Introduction to Reliable

and Secure Distributed Programming. Springer Publishing Company, Incorporated,

Heidelberg, Germany, 2nd edition, 2011.

[17] Centos - download. https://www.centos.org/download/. Online; accessed 14-Jul-

2025.

[18] Inho Choi, Ellis Michael, Yunfan Li, Dan R. K. Ports, and Jialin Li. Hydra:

Serialization-Free network ordering for strongly consistent distributed applica-

tions. In 20th USENIX Symposium on Networked Systems Design and Implementa-

tion (NSDI ’23), pages 293–320, 2023.

[19] The Cost of Latency. https://perspectives.mvdirona.com/2009/10/the-cost-of-

latency/. Online; accessed 14-Jul-2025.

[20] OR Forum—The Cost of Latency in High-Frequency Trading. https://www.jstor.

org/stable/24540485. Online; accessed 14-Jul-2025.

[21] Alexandros Daglis, Mark Sutherland, and Babak Falsafi. Rpcvalet: Ni-driven tail-

aware balancing of µs-scale rpcs. In Proceedings of the Twenty-Fourth International

Conference on Architectural Support for Programming Languages and Operating

Systems, ASPLOS ’19, page 35–48, New York, NY, USA, 2019. Association for

Computing Machinery.

[22] Huynh Tu Dang, Marco Canini, Fernando Pedone, and Robert Soulé. Paxos made

switch-y. SIGCOMM Comput. Commun. Rev., 46(2):18–24, may 2016.

[23] Huynh Tu Dang, Daniele Sciascia, Marco Canini, Fernando Pedone, and Robert

Soulé. NetPaxos: consensus at network speed. In Proceedings of the 1st ACM

SIGCOMM Symposium on Software Defined Networking Research, SOSR ’15, pages

1–7, New York, NY, USA, June 2015. Association for Computing Machinery.

[24] Intel Ethernet’ s Performance Report with DPDK 23.03. https://fast.dpdk.org/

doc/perf/DPDK_23_03_Intel_NIC_performance_report.pdf. Online; accessed

14-Jul-2025.

[25] DPDK testpmd app. https://doc.dpdk.org/guides/testpmd_app_ug/. Online;

accessed 14-Jul-2025.

[26] Dmitry Duplyakin, Robert Ricci, Aleksander Maricq, Gary Wong, Jonathon

Duerig, Eric Eide, Leigh Stoller, Mike Hibler, David Johnson, Kirk Webb, Aditya

Akella, Kuangching Wang, Glenn Ricart, Larry Landweber, Chip Elliott, Michael

Zink, Emmanuel Cecchet, Snigdhaswin Kar, and Prabodh Mishra. The design and

operation of CloudLab. In Proceedings of the USENIX Annual Technical Conference

(ATC), pages 1–14, July 2019.

[27] Etcd hardware reccomendations. https://etcd.io/docs/v3.5/op-guide/hardware/

#network. Online; Accessed 14-Jul-2025.

[28] Joshua Fried, Zhenyuan Ruan, Amy Ousterhout, and Adam Belay. Caladan:

Mitigating interference at microsecond timescales. In 14th USENIX Symposium on

Operating Systems Design and Implementation (OSDI 20), pages 281–297. USENIX

Association, November 2020.

[29] Phillipa Gill, Navendu Jain, and Nachiappan Nagappan. Understanding network

failures in data centers: measurement, analysis, and implications. SIGCOMM

Comput. Commun. Rev., 41(4):350–361, August 2011.

[30] Matthew P. Grosvenor, Malte Schwarzkopf, Ionel Gog, Robert N. M. Watson,

Andrew W. Moore, Steven Hand, and Jon Crowcroft. Queues Don’t matter when

you can JUMP them! In 12th USENIX Symposium on Networked Systems Design

and Implementation (NSDI 15), pages 1–14, Oakland, CA, May 2015. USENIX

Association.

[31] Rachid Guerraoui, Antoine Murat, Javier Picorel, Athanasios Xygkis, Huabing

Yan, and Pengfei Zuo. uKharon: A membership service for microsecond appli-

cations. In 2022 USENIX Annual Technical Conference (USENIX ATC 22), pages

101–120, July 2022.

[32] Zhisheng Hu, Pengfei Zuo, Yizou Chen, Chao Wang, Junliang Hu, and

Ming-Chang Yang. Aceso: Achieving Efficient Fault Tolerance in Memory-

Disaggregated Key-Value Stores. In ACM SIGOPS 30th Symposium on Operating

Systems Principles (SOSP ’24’), page 127–143, 2024.

[33] Kaiwen Huang, Ronghui Hou, and Yingming Zeng. Lwsbft: Leaderless weakly

synchronous BFT protocol. Computer Networks, 219:109419, 2022.

[34] Nicholas Hunt, Tom Bergan, Luis Ceze, and Steven D. Gribble. Ddos: tam-

ing nondeterminism in distributed systems. SIGARCH Comput. Archit. News,

41(1):499–508, mar 2013.

[35] Patrick Hunt, Mahadev Konar, Flavio P. Junqueira, and Benjamin Reed.

ZooKeeper: Wait-free coordination for internet-scale systems. In 2010 USENIX

Annual Technical Conference (USENIX ATC 10). USENIX Association, June 2010.

[36] Stephen Ibanez, Alex Mallery, Serhat Arslan, Theo Jepsen, Muhammad Shahbaz,

Changhoon Kim, and Nick McKeown. The nanopu: A nanosecond network stack

for datacenters. In 15th USENIX Symposium on Operating Systems Design and

Implementation (OSDI 21), pages 239–256. USENIX Association, July 2021.

[37] Intel Corporation. Intel® Infrastructure Processing Unit (Intel® IPU) Plat-

form F2000X-PL . https://cdrdv2-public.intel.com/792306/ipu-f2000-pl-platform-

product-brief.pdf. Online; accessed 14-Jul-2025.

[38] iPerf tool. https://iperf.fr/. Online; accessed 14-Jul-2025.

[39] Zsolt István, David Sidler, Gustavo Alonso, and Marko Vukolic. Consensus in

a box: inexpensive coordination in hardware. In Proceedings of the 13th Usenix

Conference on Networked Systems Design and Implementation, NSDI’16, pages

425–438, USA, March 2016. USENIX Association.

[40] Joseph Izraelevitz, Gaukas Wang, Rhett Hanscom, Kayli Silvers, Tamara Silber-

gleit Lehman, Gregory Chockler, and Alexey Gotsman. Acuerdo: Fast Atomic

Broadcast over RDMA. In Proceedings of the 51st International Conference on

Parallel Processing, ICPP ’22, pages 1–11, New York, NY, USA, January 2023.

Association for Computing Machinery.

[41] Patrick Jahnke, Vincent Riesop, Pierre-Louis Roman, Pavel Chuprikov, and

Patrick Eugster. Live in the express lane. In 2021 USENIX Annual Technical

Conference (USENIX ATC 21), pages 581–597, July 2021.

[42] Sagar Jha, Jonathan Behrens, Theo Gkountouvas, Mae Milano, Weijia Song,

Edward Tremel, Robbert Van Renesse, Sydney Zink, and Kenneth P. Birman.

Derecho: Fast State Machine Replication for Cloud Services. ACM Transactions

on Computer Systems, 36(2):4:1–4:49, April 2019.

[43] Xin Jin, Xiaozhou Li, Haoyu Zhang, Nate Foster, Jeongkeun Lee, Robert Soulé,

Changhoon Kim, and Ion Stoica. NetChain: Scale-Free Sub-RTT coordination.

In 15th USENIX Symposium on Networked Systems Design and Implementation

(NSDI 18), pages 35–49, Renton, WA, April 2018. USENIX Association.

[44] L Johnsson and G Netzer. The impact of moore’s law and loss of dennard scaling:

Are dsp socs an energy efficient alternative to x86 socs? Journal of Physics:

Conference Series, 762(1):012022, oct 2016.

[45] Flavio P. Junqueira, Benjamin C. Reed, and Marco Serafini. Zab: High-

performance broadcast for primary-backup systems. In 2011 IEEE/IFIP 41st

International Conference on Dependable Systems and Networks (DSN), pages 245–

256, 2011.

[46] Anuj Kalia, Michael Kaminsky, and David Andersen. Datacenter RPCs can be

general and fast. In 16th USENIX Symposium on Networked Systems Design and

Implementation (NSDI 19), pages 1–16, Boston, MA, February 2019. USENIX

Association.

13

https://cwiki.apache.org/confluence/display/kafka/kafka+replication#:~:text=In%20primary-backup%20replication%2C%20the,write%20to%20the%20remaining%20replicas
https://cwiki.apache.org/confluence/display/kafka/kafka+replication#:~:text=In%20primary-backup%20replication%2C%20the,write%20to%20the%20remaining%20replicas
https://cwiki.apache.org/confluence/display/kafka/kafka+replication#:~:text=In%20primary-backup%20replication%2C%20the,write%20to%20the%20remaining%20replicas
https://www.crunchydata.com/blog/synchronous-replication-in-postgresql
https://www.crunchydata.com/blog/synchronous-replication-in-postgresql
https://www.intel.com/content/www/us/en/products/details/fpga/agilex/7.html
https://www.intel.com/content/www/us/en/products/details/fpga/agilex/7.html
https://www.alibabacloud.com/blog/deep-dive-into-alibaba-cloud-f3-fpga-as-a-service-instances_594057
https://www.alibabacloud.com/blog/deep-dive-into-alibaba-cloud-f3-fpga-as-a-service-instances_594057
https://www.xilinx.com/content/dam/xilinx/publications/product-briefs/alveo-u280-product-brief.pdf
https://www.xilinx.com/content/dam/xilinx/publications/product-briefs/alveo-u280-product-brief.pdf
https://aws.amazon.com/ec2/instance-types/f2/
https://www.centos.org/download/
https://perspectives.mvdirona.com/2009/10/the-cost-of-latency/
https://perspectives.mvdirona.com/2009/10/the-cost-of-latency/
https://www.jstor.org/stable/24540485
https://www.jstor.org/stable/24540485
 https://fast.dpdk.org/doc/perf/DPDK_23_03_Intel_NIC_performance_report.pdf
 https://fast.dpdk.org/doc/perf/DPDK_23_03_Intel_NIC_performance_report.pdf
https://doc.dpdk.org/guides/testpmd_app_ug/
https://etcd.io/docs/v3.5/op-guide/hardware/#network
https://etcd.io/docs/v3.5/op-guide/hardware/#network
https://cdrdv2-public.intel.com/792306/ipu-f2000-pl-platform-product-brief.pdf
https://cdrdv2-public.intel.com/792306/ipu-f2000-pl-platform-product-brief.pdf
https://iperf.fr/

Davide Rovelli, Christian Faerber, Graham McKenzie, Ali Pahlevan, Sina Darabi, Patrick Jahnke, and Patrick Eugster

[47] Elie F. Kfoury, Jorge Crichigno, and Elias Bou-Harb. An exhaustive survey on

p4 programmable data plane switches: Taxonomy, applications, challenges, and

future trends. IEEE Access, 9:87094–87155, 2021.

[48] Marios Kogias and Edouard Bugnion. HovercRaft: achieving scalability and

fault-tolerance for microsecond-scale datacenter services. In Proceedings of the

Fifteenth European Conference on Computer Systems, EuroSys ’20, pages 1–17,

New York, NY, USA, April 2020. Association for Computing Machinery.

[49] L. Lamport, R. E. Shostak, and M. C. Pease. The Byzantine Generals Problem.

Transactions on Programming Languages and Systems, 4(3):382–401, 1982.

[50] Leslie Lamport. The part-time parliament. ACM Trans. Comput. Syst.,

16(2):133–169, may 1998.

[51] Youngmoon Lee, Hasan Al Maruf, Mosharaf Chowdhury, Asaf Cidon, and Kang G.

Shin. Hydra: Resilient and Highly Available Remote Memory. In 20th USENIX

Conference on File and Storage Technologies (FAST ’22), pages 181–198, February

2022.

[52] Jialin Li, Naveen Kr. Sharma, Dan R. K. Ports, and Steven D. Gribble. Tales of the

tail: Hardware, os, and application-level sources of tail latency. In Proceedings of

the ACM Symposium on Cloud Computing, SOCC ’14, page 1–14, New York, NY,

USA, 2014. Association for Computing Machinery.

[53] Nanqinqin Li, Anja Kalaba, Michael J. Freedman, Wyatt Lloyd, and Amit Levy.

Speculative Recovery: Cheap, Highly Available Fault Tolerance with Disaggre-

gated Storage. In 2022 USENIX Annual Technical Conference (ATC ’22), pages

271–286, July 2022.

[54] Barbara H. Liskov and James A. Cowling. Viewstamped replication revisited.

2012.

[55] Shengyun Liu, Paolo Viotti, Christian Cachin, Vivien Quéma, and Marko Vukolic.

XFT: practical fault tolerance beyond crashes. In 12th USENIX Symposium on

Operating Systems Design and Implementation, (OSDI ’16’), pages 485–500, 2016.

[56] Vincent Liu, Daniel Halperin, Arvind Krishnamurthy, and Thomas Anderson. F10:

A Fault-Tolerant engineered network. In 10th USENIX Symposium on Networked

Systems Design and Implementation (NSDI 13), pages 399–412, Lombard, IL, April

2013. USENIX Association.

[57] Nancy Lynch. Distributed Algorithms. 1996.

[58] Sarah McClure, Amy Ousterhout, Scott Shenker, and Sylvia Ratnasamy. Efficient

scheduling policies for Microsecond-Scale tasks. In 19th USENIX Symposium on

Networked Systems Design and Implementation (NSDI 22), pages 1–18, Renton,

WA, April 2022. USENIX Association.

[59] Mellanox Connectx-4. http://www.mellanox.com/related-docs/prod_adapter_

cards/PB_ConnectX-4_VPI_Card.pdf. Online; accessed 14-Jul-2025.

[60] Nenad Milosevic, Daniel Cason, Zarko Milosevic, and Fernando Pedone. How

robust are synchronous consensus protocols? In 28th International Conference

on Principles of Distributed Systems, OPODIS 2024, December 11-13, 2024, Lucca,

Italy, volume 324 of LIPIcs, pages 20:1–20:25, 2024.

[61] Nenad Milosevic, Daniel Cason, Zarko Milosevic, Robert Soulé, and Fernando

Pedone. Message size matters: Alterbft’s approach to practical synchronous BFT

in public clouds. CoRR, abs/2503.10292, 2025.

[62] NVIDIA MLNX_OFED Hardware Timestamping documentation. https://docs.

nvidia.com/networking/display/mlnxofedv543681lts/time-stamping. Online;

accessed 14-Jul-2025.

[63] Intel® Infrastructure Processing Unit (Intel® IPU) Platform F2000X-PL

. https://www.intel.com/content/www/us/en/software-kit/750666/modelsim-

intel-fpgas-standard-edition-software-version-20-1-1.html. Online; accessed

14-Jul-2025.

[64] Diego Ongaro and John Ousterhout. In Search of an Understandable Consensus

Algorithm. In 2014 USENIX Annual Technical Conference, USENIX ATC ’14, pages

305–319, 2014.

[65] Amy Ousterhout, Joshua Fried, Jonathan Behrens, Adam Belay, and Hari Bal-

akrishnan. Shenango: Achieving high CPU efficiency for latency-sensitive data-

center workloads. In 16th USENIX Symposium on Networked Systems Design and

Implementation (NSDI 19), pages 361–378, Boston, MA, February 2019. USENIX

Association.

[66] Simon Peter, Jialin Li, Irene Zhang, Dan R. K. Ports, Doug Woos, Arvind Krishna-

murthy, Thomas Anderson, and Timothy Roscoe. Arrakis: The operating system

is the control plane. ACM Trans. Comput. Syst., 33(4), nov 2015.

[67] Marius Poke and Torsten Hoefler. Dare: High-performance state machine repli-

cation on rdma networks. In Proceedings of the 24th International Symposium on

High-Performance Parallel and Distributed Computing, HPDC ’15, page 107–118,

New York, NY, USA, 2015. Association for Computing Machinery.

[68] Redis. https://redis.io. Online; accessed 14-Jul-2025.

[69] RedisRaft, consistent key-value store. https://github.com/RedisLabs/redisraft.

Online; accessed 14-Jul-2025.

[70] Redis Replication Docs. https://redis.io/docs/latest/operate/oss_and_stack/

management/replication/. Online; accessed 14-Jul-2025.

[71] Rocky linux - download. https://rockylinux.org/download. Online; accessed

14-Jul-2025.

[72] Davide Rovelli, Pavel Chuprikov, Philipp Berdesinski, Ali Pahlevan, Patrick

Jahnke, and Patrick Eugster. FiDe: Reliable and Fast Crash Failure Detection to

Boost Datacenter Coordination. In 2025 USENIX Annual Technical Conference

(ATC’25), pages 765–788, 2025.

[73] Davide Rovelli and Patrick Eugster. Digital cluster circuits for reliable datacenters.

In 2025 55th Annual IEEE/IFIP International Conference on Dependable Systems

and Networks - Supplemental Volume (DSN-S), pages 201–205, 2025.

[74] Davide Rovelli, Michele Dalle Rive, and Patrick Eugster. Toward a practical

deterministic datapath for 6g end devices. IEEE Network, 39(3):75–82, 2025.

[75] Nicolas Schiper and Sam Toueg. A robust and lightweight stable leader election

service for dynamic systems. In 2008 IEEE International Conference on Dependable

Systems and Networks With FTCS and DCC (DSN), pages 207–216, 2008.

[76] R.D. Schlichting and F.B. Schneider. Fail-Stop Processors: An Approach to

Designing Fault-Tolerant Computing Systems. ACM Transactions on Computer

Systems (TOCS), 1(3):222–238, 1983.

[77] Jonathan Stone and Craig Partridge. When the crc and tcp checksum disagree.

SIGCOMM Comput. Commun. Rev., 30(4):309–319, aug 2000.

[78] Stress-ng tool. http://colinianking.github.io/stress-ng/. Online; accessed 20-May-

2025.

[79] Mark Sutherland, Siddharth Gupta, Babak Falsafi, Virendra Marathe, Dionisios

Pnevmatikatos, and Alexandres Daglis. The nebula rpc-optimized architecture. In

Proceedings of the ACM/IEEE 47th Annual International Symposium on Computer

Architecture, ISCA ’20, page 199–212. IEEE Press, 2020.

[80] Catching Corrupted OSPF Packets! - Blog. https://routingfreak.wordpress.com/

2011/03/01/catching-corrupted-ospf-packets/. Online; accessed 14-Jul-2025.

[81] How both TCP and Ethernet checksums fail - Blog. https://www.evanjones.ca/

tcp-and-ethernet-checksums-fail.html. Online; accessed 14-Jul-2025.

[82] Parth Thakkar, Rohan Saxena, and Venkata N. Padmanabhan. Autosens: inferring

latency sensitivity of user activity through natural experiments. In Proceedings

of the 21st ACM Internet Measurement Conference, IMC ’21, page 15–21, New

York, NY, USA, 2021. Association for Computing Machinery.

[83] Maarten Van Steen and Andrew S Tanenbaum. Distributed systems. Maarten van

Steen Leiden, The Netherlands, 2017.

[84] Xingda Wei, Rongxin Cheng, Yuhan Yang, Rong Chen, and Haibo Chen. Charac-

terizing off-path SmartNIC for accelerating distributed systems. In 17th USENIX

Symposium on Operating Systems Design and Implementation (OSDI 23), pages

987–1004, Boston, MA, July 2023. USENIX Association.

[85] Irene Zhang, Amanda Raybuck, Pratyush Patel, Kirk Olynyk, Jacob Nelson,

Omar S. Navarro Leija, Ashlie Martinez, Jing Liu, Anna Kornfeld Simpson, Sujay

Jayakar, Pedro Henrique Penna, Max Demoulin, Piali Choudhury, and Anirudh

Badam. The demikernel datapath os architecture for microsecond-scale datacen-

ter systems. In Proceedings of the ACM SIGOPS 28th Symposium on Operating

Systems Principles, SOSP ’21, page 195–211, New York, NY, USA, 2021. Association

for Computing Machinery.

[86] Yang Zhou, Zezhou Wang, Sowmya Dharanipragada, and Minlan Yu. Electrode:

Accelerating Distributed Protocols with {eBPF}. pages 1391–1407, 2023.

[87] Yang Zhou, Hassan M. G. Wassel, Sihang Liu, Jiaqi Gao, James Mickens, Minlan

Yu, Chris Kennelly, Paul Turner, David E. Culler, Henry M. Levy, and Amin

Vahdat. Carbink: Fault-Tolerant Far Memory. In 16th USENIX Symposium on

Operating Systems Design and Implementation (OSDI ’22), pages 55–71, July 2022.

[88] Zookeeper administrator’s guide. https://zookeeper.apache.org/doc/r3.1.2/

zookeeperAdmin.html. Online; Accessed 14-Jul-2025.

14

http://www.mellanox.com/related-docs/prod_adapter_cards/PB_ConnectX-4_VPI_Card.pdf
http://www.mellanox.com/related-docs/prod_adapter_cards/PB_ConnectX-4_VPI_Card.pdf
https://docs.nvidia.com/networking/display/mlnxofedv543681lts/time-stamping
https://docs.nvidia.com/networking/display/mlnxofedv543681lts/time-stamping
https://www.intel.com/content/www/us/en/software-kit/750666/modelsim-intel-fpgas-standard-edition-software-version-20-1-1.html
https://www.intel.com/content/www/us/en/software-kit/750666/modelsim-intel-fpgas-standard-edition-software-version-20-1-1.html
https://redis.io
https://github.com/RedisLabs/redisraft
https://redis.io/docs/latest/operate/oss_and_stack/management/replication/
https://redis.io/docs/latest/operate/oss_and_stack/management/replication/
https://rockylinux.org/download
http://colinianking.github.io/stress-ng/
https://routingfreak.wordpress.com/2011/03/01/catching-corrupted-ospf-packets/
https://routingfreak.wordpress.com/2011/03/01/catching-corrupted-ospf-packets/
https://www.evanjones.ca/tcp-and-ethernet-checksums-fail.html
https://www.evanjones.ca/tcp-and-ethernet-checksums-fail.html
https://zookeeper.apache.org/doc/r3.1.2/zookeeperAdmin.html
https://zookeeper.apache.org/doc/r3.1.2/zookeeperAdmin.html

	Abstract
	1 Introduction
	2 Background and motivation
	2.1 The rise of programmable network devices
	2.2 Accelerating consensus in datacenters

	3 Design
	3.1 System model
	3.2 Architecture
	3.3 Stable interactions on network hardware

	4 Quorum-less optimal consensus
	4.1 rsbcast
	4.2 Consensus core: lowi

	5 Implementation
	5.1 Development
	5.2 lowi system integration

	6 Evaluation
	6.1 Methodology
	6.2 RQ1: interaction stability
	6.3 RQ2: consensus performance
	6.4 RQ3: fault tolerance and availability
	6.5 RQ4: real-world applications

	7 Nano-consensus in the big picture
	8 Related work
	9 Conclusions
	References

