Nano-consensus: ultra-fast, quorum-Iless coordination on the wire
(To appear at ACM Symposium on Cloud Computing 2025)

Davide Rovelli Christian Faerber Ali Pahlevan
Universita della Svizzera Italiana Graham McKenzie SAP
SAP Altera Germany
Switzerland Germany, United Kindgdom
Sina Darabi Patrick Jahnke Patrick Eugster
Universita della Svizzera Italiana turbalance Universita della Svizzera Italiana
Switzerland Germany Switzerland

ABSTRACT

Consensus, widely regarded as the most fundamental primitive in
distributed systems, lies at the core of countless services that require
coordination among remote processes. Datacenter services typi-
cally achieve consensus through long-established, quorum-based
algorithms such as Paxos and Raft, including recent re-adaptations
for kernel bypass datapaths (e.g. smartNIC/RDMA-based consen-
sus). While these optimizations can reduce latency to the ps-scale,
they remain constrained by inherent message complexity, namely
the need for acknowledgments from majority quorums to tolerate
faults and arbitrary message delays. Our approach takes a step fur-
ther from bare acceleration of classical primitives, focusing instead
on leveraging FPGA-smartNIC and priority-queue reservation to
achieve synchronous remote interactions in practice. We use syn-
chrony to devise a novel, efficient quorum-less consensus protocol
which we use to build Nano-consensus: a novel hardware consen-
sus engine. Nano-consensus operates at network line rate and can
reach consensus in 1.03ps for single-packet instances, delivering
3.82% latency and 4.8X improvements over the state of the art.
We demonstrate how Nano-consensus can be integrated into dis-
tributed applications to boost both performance and consistency.

1 INTRODUCTION

Coordination in datacenters. Modern high-performance, user-
facing applications including ps-scale key-values stores and high-
frequency trading frameworks are deployed as interactive online
services running 24 X 7 in datacenters with stringent availability
and reliability requirements only be met by replication and or-
chestration on multiple resources. Such distributed coordination
is provided by algorithms which solve the well-known consensus
problem. As network bandwidth approaches the Tbps limit [3] and
demands increase accordingly, a primary concern in datacenter
design is making consensus efficient to avoid it being a bottleneck
without sacrificing fault tolerance or consistency.

The limits of software coordination. This very challenging task
has recently received significant research attention, with focus
on accelerating traditional quorum-based consensus algorithms
via kernel bypass technologies in software. Recent solutions in-
clude adaptations of popular Paxos [50] and Raft [64] algorithms
to custom network stacks [41, 46], remote direct memory access
(RDMA) [7, 31, 40], data plane development kit (DPDK) [48], and
extended Berkeley packet filter (eBPF) express data path (XDP) [72,

86]. By overcoming the limitations posed by the commodity net-
work stack, these approaches manage to reach consensus in tens of
us while withstanding high request throughput in the common-case.
Alas, software coordination algorithms often have to compromise
good common-case performance benefits with high tail-latency
beyond some 99.x'h percentile. This limitation arises from the in-
herent multi-tasking nature of the underlying software stack and
operating system (OS), which must inevitably sacrifice, i.e., de-
lay/preempt, some processing tasks upon contention. In addition,
on top of relying on specific kernel bypass technologies (often a
given version), these solutions employ disruptive optimizations
(e.g., custom priority scheduling [28, 58], heavily customized OS
and power configuration settings [31, 41, 72]), and also require a lot
of server CPU cores and network bandwidth. As a result, software
coordination algorithms are often difficult to deploy and co-locate
on general-purpose servers — contrary to the common assumption
that software inherently offers such flexibility.

Shortcomings of bare acceleration. The rising availability of smart
network interface controllers (smartNICs) equipped with field pro-
grammable gate arrays (FPGAs) in major clouds, e.g., Alibaba [9],
Amazon [12] and several others [15], offer a more efficient, more
stable and self-contained alternative to software-based packet pro-
cessing routines. A small number of hardware-supported consensus
algorithms have emerged in this context, including services which
partially or fully offload algorithms to programmable network
switches [14, 22, 23, 43] or to programmable smartNICs [41]. FPGA-
based smartNIC (FPGA-smartNIC) solutions [10, 36, 39], spear-
headed by Consensus in a Box [39], have proven to be able to handle
a near-to-capacity rate of client requests at a low latency [10], out-
performing software solutions. However, these approaches have
a fundamental limitation in that they only focus on accelerating
classic quorum-based consensus algorithms which were devised
for slower, unreliable networks and unpredictable software pro-
cessing latency, thus overlooking the interaction (communication
+ processing) stability of modern network hardware. As shown in
our extensive tests under heavy network and processing stress (see
Tab. 1), hardware worst-case remote interaction latency is only
few nanoseconds more than the average, unlike traditional software
stacks which incur heavy latency degradation towards the tail. Our
work builds on this key observation: the combination of uninter-
rupted access to incoming packets on dedicated hardware modules

Davide Rovelli, Christian Faerber, Graham McKenzie, Ali Pahlevan, Sina Darabi, Patrick Jahnke, and Patrick Eugster

and reliable datacenter network protocols providing bounded la-
tency [30, 41, 72-74] make it practical to build systems relying on
synchronous interactions for critical tasks. FiDe [72], for instance,
builds synchrony support through traffic engineering and process
isolation techniques to implement reliable process failure detection.
FiDe however targets commodity systems without smartNICs and
relies on complex OS fine-tuning which limits its reliability.

Unleashing hardware potential with nano-consensus. We propose
Nano-consensus, a novel system based on software/FPGA-based
smartNICs co-design which exploits the programmability and pre-
dictability of datacenter networks. Our prototype shows that plac-
ing logic close to the wire leads to extremely robust processing times
which, together with traffic prioritization in network switches, lim-
its the worst-case latency to a mere few clock cycles more than the
average (30ns in our experiments). We use the achieved interaction
stability to devise a novel, leader-based consensus primitive, dubbed
looped one-way imposition (LOWI), which requires only one mes-
sage delay to reach consensus when multiple instances are exe-
cuted in series, e.g., in state machine replication (SMR). To be clear,
the efficiency and correctness of LOWI depend on assuming syn-
chrony. While all-encompassing synchrony is unfeasible, we find
the probability of synchrony violations in a controlled datacenter
environment is negligible for practical purposes, as also evidenced
by recent software services [41, 72]. Nano-consensus further sup-
ports synchrony from the ground up by delegating its execution
entirely to network hardware, in contrast to works that simply take
synchrony as a given including replicated services [1, 2, 70] and
blockchains [4, 33, 60, 61]. As network failures occur less frequently
than protocol-level errors like CRC checks, operating under the
assumption that the network failures that occur can be masked by
redundancy does not substantially affect our system’s availability.

Improvements. LOWI introduces important algorithmic improve-
memts with respect to classical synchronous consensus algorithms,
e.g., by Lynch [57] in which processes disseminate n?> messages
per round and different correct processes might decide in differ-
ent rounds. Nano-consensus handles failures in hardware and can
tolerate up to n — 1 failures of the n endhosts, showcasing how
re-architecting services considering modern network capabilities
can achieve optimality in both message complexity and resilience.
Our prototype can process packets at network line-rate, achieving
1-microsecond latency for a consensus decision — unprecedented
to our knowledge. It also handles leader failures in 2ps and can
achieve a server response time of 1.03pus when used to implement a
simple SMR application, respectively 30X and 3.82x lower latency
and 4.8X higher throughput than Waverunner [10] — the fastest
FPGA-smartNIC SMR engine. Nano-consensus also outperforms
software implementations and is deployed on modern SoC + FPGA
off-path smartNICs that can be connected to a server out-of-the-
box, without affecting the host.

Contributions. After presenting background information in § 2
this paper makes the following contributions:

§ 3 We propose the design of Nano-consensus, a novel coordi-
nation engine operating as fast as the underlying network.
§ 4 Weintroduce a new quorum-less consensus algorithm using
practical synchronous interaction supported by our system.

Table 1: Different percentiles of worst-case latencies mea-
sured over 40 days (50th corresponds to the median) in ps.

50th 9gth 99.99th 1gpth
Nano-consensus 1.41 1.45 1.45 1.48
RDMA 3.15 3.93 8.18 144.78
AF_XDP 13.54 29.03 51.77 170.57
UDP 13.48 72.07 165.04 996.65

§ 5 We outline the implementation of Nano-consensus on Al-
tera’s F2000X-PL [37] infrastructure processing unit (IPU).

§ 6 We empirically evaluate our prototype in terms of interac-
tion stability, performance, and failure recovery in a SAP
datacenter. In short, Nano-consensus outperforms state-of-
the-art hardware and software solutions, e.g., respectively
reducing latency by 3.82X and 5.3x and increasing goodput
by 4.8x and 12x. We use Nano-consensus to implement
SMR which we integrate into a key-value store, providing
strong consistency without compromising native perfor-
mance.

§ 7 puts Nano-consensus into perspective. § 8 contrasts it with
related work. § 9 concludes with final remarks.

2 BACKGROUND AND MOTIVATION

2.1 The rise of programmable network devices

From the end of Dennard scaling [44] over a decade ago, processor
design has shifted from increasing clock speed to increasing par-
allelization. Building upon this, another more recent trend shows
drastic change of datacenter hardware towards more specialized ar-
chitectures, creating end-to-end heterogeneous systems optimized
for specific workloads [79]. In this ecosystem, programmable net-
work devices have arisen to enable offloading of custom logic to both
the core of the network (e.g., programmable switches [47]) and end-
hosts (smartNICs [84]). Among the latter devices, FPGA-smartNICs
offering full-fledged hardware customization have become widely
available in the market and in the cloud, with major providers such
as Alibaba [9], Amazon [12] and several others [15] exposing them
to application developers. Nano-consensus exploits the design of
Altera’s infrastructure processing unit (F2000X-PL) [37], using the
on-board FPGA to implement a high-performance consensus pro-
tocol, as in related works [10, 39].

2.2 Accelerating consensus in datacenters

Consensus is the problem of reaching an agreement among multiple
processes — often regarded as the most important in distributed
systems [83]. Its long research history has produced countless algo-
rithms which are at the heart of critical datacenter services, namely
state machine replication (SMR), which ensures that a replicated
system is available and consistent even if some servers fail. This
is typically achieved by establishing a majority quorum of size
f + 1 where f is the maximum number of tolerated failures and
n = 2f + 1 is the minimum number of replicas needed. Estab-
lished quorum-based consensus algorithms such as Paxos [50] and

Nano-consensus: ultra-fast, quorum-less coordination on the wire

(To appear at ACM Symposium on Cloud Computing 2025)

Raft [64] ensure that a system is safe and live in the partially-
synchronous model where messages have to be eventually deliv-
ered (i.e., can be arbitrarily delayed until a global stabilization time).
These guarantees come at the cost of increased communication
complexity. In widely adopted variations of Paxos and Raft, a de-
cision can be taken only as quickly as a quorum round-trip al-
lows. This performance overhead is often so high that practical
systems loosen consistency guarantees, (e.g., Redis default replica-
tion uses best-effort broadcast [70]). To address the problem, state-
of-the-art solutions exploit kernel bypass techniques to reduce
packet processing overhead and accelerate consensus. These tech-
niques include RDMA [7, 31, 40, 42, 67], DPDK [48], eBPF XDP [86]
and custom network stacks [41, 46]. In this context, few emerg-
ing consensus implementations with software/FPGA-smartNIC co-
design [10, 14, 36, 39] offer significant performance improvements
compared to software-only counterparts. Besides increased per-
formance, we show how FPGA-smartNICs offer extremely stable
and predictable processing times [73] and have a negligible im-
pact on tail-latency compared to sources of interference at the host
(cf. § 6.2).

3 DESIGN

Nano-consensus provides a novel uniform consensus and replica-
tion engine designed for a cluster of FPGA-smartNICs in a datacen-
ter.

3.1 System model

For a long time, all distributed systems have been communally
considered to be asynchronous, i.e., devoid of upper bounds on
communication and processing delays, confounding all kinds of
setups including local-area vs wide-area deployments, wired vs
wireless communication, stationary vs mobile hosts, etc. There
have been significant improvements on all fronts since, and more
differentiation between setups. Several systems have thus started
to go against that common wisdom including

o distributed datacenter services, e.g., reliable failure detec-
tors [72], low-latency messaging systems [41] which achieve
bounded interaction in software through complex OS instru-
mentation, priority networking, and traffic engineering;

o disaggregated memory (DM) replication frameworks as-
suming the process fail-stop model [76], which implies per-
fect failure detection and thus synchrony, as well as reliable
networks [32, 51, 53, 87];

e recent works [4, 33, 60, 61] on distributed process coor-
dination in the context of Byzantine failures [49] which
(similarly to DM works) take upper time bounds for com-
modity hard- and software as a given without introducing
any system support to enforce these assumptions, and dis-
regard network security concerns like (distributed) denial
of service attacks that one could expect with such security-
sensitive deployments;

o replicated variants of widely-used distributed applications
such as Kafka [1], Redis[70], and PostgreSQL [2].

Nano-consensus goes a step further by fully exploiting network
hardware support to actively clamp down on nondeterminism that

4 Network =
1 rcle Leader Followers
SoC Host SoC Host
Control Control
SW App.] SW App.]
Clients FPGA FPGA
ela o s ->‘ Consensus engine |sssp ..;‘ Consensus engine ‘

Figure 1: Nano-consensus architecture across multiple nodes.

4 Packet generator —

Host SoC
DMA DMA FIFO

4b‘ core
|

Packet
parser

Consensus

= (2) iG
&/ a
Packet processor (PP)

é}@

Physical interfaces (PHY) ‘

Figure 2: Data flow through the hardware modules of the
consensus engine.

can hamper upper time bounds, in the context of benign pro-
cess crash failures. Unlike current synchronous software frame-
works [41, 72], which need disruptive, complex and error-prone OS
configurations risking to compromise the integrity of claimed syn-
chrony, Nano-consensus achieves better performance, determinism
and usability by running in a self-contained module on widely-
available FPGA-smartNICs. Tab. 1 shows that hardware reaches
2 orders of magnitude better stability in our long-running bench-
marks (cf. § 6 for setup). In short, Nano-consensus 1. runs as a
core coordination service on highly precise FPGAs of smartNICs
to achieve timely guaranteed process response times, 2. leverages
traffic engineering and priority scheduling and queuing for entirely
avoiding packets drops due to congestion thus ensuring timely pre-
dictable packet delivery, and 3. uses redundant communication for
shielding remote process interaction from transient network link
or switch failures. As a consequence, Nano-consensus can rely on
low, timely bounded response times for its own processes and on
timely bounded reliable (multicast) communication between them.

Note that other processes execute and communicate as normal,
and priorities ensure that network resources are not lost in absence
of actual Nano-consensus traffic. Nano-consensus interaction is set
up through a controller which is not a limitation for the targeted
service and respective applications, as these are typically long-
running services such as key-value stores.

3.2 Architecture

System overview. Fig. 1 shows Nano-consensus’s architecture in
a typical multi-node deployment. A node can be either a leader or
a follower, with only one leader being present at any time. Dur-
ing normal operation, requests from clients are forwarded to the
leader which starts a consensus instance and communicates with

Davide Rovelli, Christian Faerber, Graham McKenzie, Ali Pahlevan, Sina Darabi, Patrick Jahnke, and Patrick Eugster

the followers through the datacenter network. Our system is fault-
tolerant and ensures that a new leader is elected in case the old one
is faulty. Each node executes an exact replica of Nano-consensus
and is divided into three sub-systems with separate computational
units: a host server, an system on a chip (SoC) and an FPGA. The
latter two are connected via peripheral component interconnect
express (PCle) and physically placed inside an off-path smartNIC,
which is itself attached to the host server via PCle. Nano-consensus
core logic is the consensus engine, which is entirely offloaded to
the FPGA hardware and directly attached to the network. The SoC
contains a control software layer which allows for dynamic recon-
figuration and monitoring of the consensus engine. Applications
using Nano-consensus are running on the host in isolation, only
receiving the outcome of a consensus instance. This architecture
is ideal to ensure separation of concerns, leaving the host CPU
free from costly packet processing. However, it could be adapted to
on-path smartNICs (e.g. FPGA only, no SoC) and other card designs
with minor modifications.

Consensus hardware engine. Fig. 2 shows a more detailed view
of the consensus engine, outlining its components and a sample
data flow. Incoming packets are sent from the physical interfaces
to the programmable packet processor (PP) (1), which provides
layer 2 and layer 3 switching functionality. When the PP matches
Nano-consensus packets immediately trigger a notification to the
consensus core module (2), needed for the correct functioning of the
consensus algorithm. The PP then routes packets to one or more
modules based on the Nano-consensus control settings and the
payload content. One possible path is through the packet parser ;
the relevant information is stripped and sent to the packet generator,
which assembles a new packet with software-configurable headers
+ payload and queues it in the FIFO egress . This data path is
executed exclusively in hardware, enabling packet processing and
consensus logic at line rate. The second possible path is through
the SoC: the PP forwards packets to the control software (3b) which

processes and queues them in the egress FIFO queue . This
mode enables operation when the hardware path is switched off,
and is particularly useful for batching and intermittent operations.
The third data path directly forwards packets to the host either to
propagate the result of a consensus instance to the application or
as a passthrough for generic packets @ Finally, (5) the consensus
core triggers send notifications at regular intervals, dequeueing
packets from the FIFO queue, passing them to the PP and sending
them to the wire (6). This rate limiting functionality is core to our
consensus algorithms in § 4.

Communication. Nano-consensus uses UDP with IP multicast
for communication, combined with several other techniques to in-
crease reliability. Packets are either created in software and piped
to the egress FIFO queue or a base packet is pre-filled and written
to the FPGA memory to be modified by the packet generator. Each
process participating in consensus can belong to groups identified
by unique multicast addresses, where processes can dynamically
join/leave. UDP greatly simplifies hardware complexity compared
to a TCP stack and avoids re-transmission overhead which would
increase jitter, hampering interaction stability. Nano-consensus

NaI}(o-tconsensus Priority [@ Consensus request
packe o
@& Other packet queues R Dropped packet
“ ’ %\% TEE > T
:I—TP Rate ‘ [AJAJATA] AIA
= J(limiter g i L = B S
NIC Switch

Figure 3: Nano-consensus sample communication in a sec-
tion of the network. Consensus requests from clients and
other packets can be dropped while Nano-consensus makes
its packets never exceed network capacity.

rate-limits traffic inside multicast groups to prevent packet drops-
due to congestion which, alongside redundant links to cater for
several network failures, make the probability of packet loss so
low that it can be considered negligible for realistic uptimes, as
discussed shortly.

3.3 Stable interactions on network hardware

We substantiate how stable interactions (intended as communica-
tion + processing latency) can be achieved inside datacenters by
exploiting the predictability of programmable network hardware,
leading to reliable, low upper time bounds on message delivery
(>100x smaller than standard software configurations, cf. Tab. 1).

Deterministic processing in network hardware. The traditional
network stack is notoriously a bottleneck for high-throughput ap-
plications, leading to poor, unpredictable packet processing latency.
A large number of software approaches propose optimized data
paths [41, 46, 85] and scheduling policies [28, 58] to mitigate this
issue, achieving very low latency below some 99.xth percentile or
claiming upper time bounds on communication for a specific sys-
tem setup [41]. Even if to a smaller extent, such systems still suffer
from consequences of the many sources of interference at the end-
host [41], causing costly context switches and related latency spikes.
Nano-consensus overcomes software unpredictability by offloading
all latency-critical logic to custom hardware on FPGA-smartNICs
which allows direct access to packets from the wire, bypassing
interference otherwise induced by resource contention in the PCle
bus and OS. The resulting custom circuit is dedicated exclusively to
processing Nano-consensus packets as soon as they arrive, leading
to ultra-low, predictable, stable latency. Low-jitter processing is also
exhibited by similar hardware algorithms [10, 39] which, however,
focus only on low latency and use it to accelerate Zab [45] and
Raft respectively. A major limiting factor in FPGA-smartNICs algo-
rithms is the frequency at which the hardware can deterministically
process packets. In Nano-consensus this is given by the consensus
core module synthesised on Altera F2000X-PL which can handle
up to 122 million packets per second (Mpps), bandwidth which is
largely sufficient to saturate 100Gbps networks and beyond.

Controlled priority traffic for zero-congestion. The other cause of
unpredictable communication latency peaks and packet drops is

Nano-consensus: ultra-fast, quorum-less coordination on the wire

(To appear at ACM Symposium on Cloud Computing 2025)

congestion due to traffic bursts exceeding network capacity. Fig. 3
shows how Nano-consensus prevents congestion by using traffic
engineering (TE) techniques to configure the network, while other
packets sent through the usual best-effort path where they can be
dropped or delayed. In short, we reserve highest-priority queues in
the hops connecting Nano-consensus nodes and apply rate limiting
at the NICs through the consensus core module (see Fig. 2). If the
input frequency of consensus requests coming either from clients or
the SoC is higher than the rate limiter allows, packets are dropped
before starting a new consensus instance. We rely on client re-
transmission for such cases. When requests go through the leader
node, they are multicast to the followers via highest-priority queues
at a rate which is pre-fixed below network capacity. Our TE ap-
proach also limits aggregation of multiple flows that might overfill
queues, in case non-fully overlapping Nano-consensus groups are
deployed. This is in practice achieved by decreasing the frequency
of the rate limiter of every node, as in previous work [30, 41, 72].

Scalability. Our system can also scale out without downtime
providing very strong availability (see § 6.4) since initialization
(TE setup and state transfer) can take place in the background (see
§ 5.2). Multiple applications can use a single Nano-consensus mod-
ule given they share the same set or a subset of processes, with the
only limit being rate limiter. For different overlapping sets of pro-
cesses, applications are required to use separate Nano-consensus
modules (one per set), which can be co-located on the same FPGA
up to ~100 modules with additional multiplexing logic.

Redundancy and safe exit for network failures. If unhandled, net-
work link or switch failures could compromise interaction stability
and make a remote process falsely suspect a failure of the sender.
This in turn could affect the consensus algorithm’s safety (cf. § 4) if
network failures partially affect Nano-consensus’s multicast (e.g.,
a link fails and only a subset of remote processes receives a packet
while others suspect the sender to have failed). Nano-consensus
exploits physical redundancy, commonly available in datacenter
network topologies, e.g., fat-trees, to tolerate a number of network
failures. Since Nano-consensus nodes send exact copies of a packet
over every redundant multicast tree, they can detect a network fail-
ure when they receive a smaller number of packets than the number
of trees, e.g., receiving only one packet with a twofold redundancy.
Once a network failure detection occurs, all Nano-consensus nodes
employ a safe exit, i.e., they simply stop processing consensus mes-
sages, to prevent additional network failures from causing false
leader suspicions. Nano-consensus can be additionally set to use
network recovery mechanisms introduced in F10 [56], Hydra [18],
and FiDe [72] to quickly establish alternative redundant paths.

Reliability of stable interactions in perspective. Predictability of
modern network devices alongside established queuing engineering
techniques make the probability of a message being lost or delayed
beyond a conservative upper time bound so low in practice that it
can be considered negligible. In our extensively tested setup (§ 6.2),
this probability is 8.7x10712 in the worst case, i.e., once every 40 days
with an average throughput of 400Mbps. As discussed, multiple
network failures affecting all redundant paths at the same time
can break synchronous interactions. However, this is extremely

unlikely in practice: recent estimates [72] based on popular real-
world network failure statistics [29] (section C) give a worst-case
probability of any two link or switch failures to occur once every
6 years in a 3-tiered fat-tree topology. Also, inconsistencies to the
consensus algorithm caused by multiple simultaneous failures or
delays occur only if these manifest in specific combinations (further
reducing probability of a safety violation) and can be prevented by
deployment, as we discuss in § 4.2. To put things into perspective,
TCP - widely regarded as reliable and used by several systems for
critical coordination as such (e.g. Zookeeper [35]) — has a higher
probability of a packet corruption going undetected. A popular
study [77] on a smaller sample base than in our experiments reports
that “the Ethernet CRC + TCP checksum will fail to detect errors
for roughly 1 in 16 million to 10 billion packets” (10~1° probability
in the best case, e.g., once every 2.9 days with an average throughput
of 400Mbps), with recent real-world cases being reported [80, 81].

4 QUORUM-LESS OPTIMAL CONSENSUS

This section outlines the algorithm behind the consensus core mod-
ule (Fig. 2). Unlike the vast majority of classical and modern consen-
sus algorithms adopted in real-world deployments, Nano-consensus
does not require a majority quorum of processes to operate, lead-
ing to a simple solution with optimal message complexity. This
novel approach is made possible by exploiting upper time bounds
of Nano-consensus’s system-supported stable interactions inside
the datacenter (cf. § 3.3).

4.1 Reliable sychronous broadcast (RSBCAST)

Properties. We define the primitive RSBCAST (which we use in
Alg. 3) to denote Nano-consensus’s communication mechanism
using timely interactions, IP multicast, redundancy and safety back-
stop. The primitive has an homonymous RsBcAsT downcall, DELIVER
and NET-FAULT upcalls. The interaction latency between sEND and
RECV events has upper time bound A + Ap, i.e., the sum of the
maximum processing and communication latency (Ay) and the max-
imum bounded clock drift (Ap) between any two nodes. RSBCAST
has the usual properties of uniform reliable broadcast (cf. [16])
plus an additional property that messages which are RSBcAST are
DELIVERed within Aj + Ap.

RSBCAST (Alg. 1). The sender sends a packet to every redundant
IP multicast group G; € G; these groups correspond to disjoint trees
connecting the same set of Nano-consensus nodes. A receiver starts
a timer once it receives the first packet: if less than |G| packets
arrive within Ay + Ap, it means that either a network failure or
packet drop has compromised the reliability of the channels. In
that case (line 12-13), the upper layers are notified through the NET-
FAULT upcall. Otherwise, when a receiver RECvs a message from all
redundant multicast trees, RSBCAST safely DELIVERs the message.
The correctness of RSBCAST’s uniform delivery is probabilistic
as a delay or |G| network failures could violate synchrony and
potentially affect safety. We show how this is extremely unlikely
in our system (cf. § 1,§ 3.3,§ 6.2) and discuss how only certain
combinations of failures impact the correctness of consensus in the
next section.

Davide Rovelli, Christian Faerber, Graham McKenzie, Ali Pahlevan, Sina Darabi, Patrick Jahnke, and Patrick Eugster

Algorithm 1: Reliable sychronous broadcast (RSBCAST)

1 G « {G1,Gz..Gn)
2 received «—

// redundant multicast groups

to RSBCAST (m):
4 foreach G; € G do

©w

5 L SEND(m) to G;

6 upon Recv(m) from G;:

7 if received = () then

8 L START (timer, A; + Ap)
9 if received = G then

10 L DELIVER (m)

11 received <« received U {G;}

12 upon TIMEOUT (timer):
13 LNET—FAULT

4.2 Consensus core: LOWI

Nano-consensus’s core engine is optimized to execute multiple
consensus instances in series which can be easily used to implement
state machine replication (SMR), i.e., the most common use case for
consensus. We first specify our consensus algorithm dubbed one-
way imposition (OWI) in Alg. 2, then introduce its looped variant
for SMR in Alg. 3, dubbed looped one-way imposition (LOWI).

Properties. We define the uniform consensus specification below.
The primitive has a PROPOSE downcall and DECIDE upcall. OWI
satisfies the following properties:

Validity: Ifaprocess calls DECIDE with value v, then v was PRoOPOSEd
by some process.

Integrity: No process does DECIDE twice.

Termination: Every correct process eventually does DECIDE some
value.

Uniform agreement: No two processes DECIDE different values.

We assume that PRoPOsSEd values are distinguishable, e.g., rep-
resenting requests or messages with unique identifiers, hence pre-
venting duplicate delivery. Like in § 4.1, the upper time bound Ay
denotes the maximum interaction latency between any two nodes.
Furthermore, all processes start within a fixed time Ay, which is
the initial synchronization time. We discuss how synchronization
is implemented in practice in § 5.2. All handlers are assumed to
execute uninterrupted; if multiple handlers are enabled at the same
time, they are triggered in a fair manner.

OWI (Alg. 2). At initialization, every process is assigned an 1D
from 1 to n to establish a hierarchy, with the leader being the process
with the smallest 1D (line 1) and other processes being followers.
We use the variable self to refer to the process 1D of the executing
process. When the leader is correct, it uses RSBCAST to reliably
disseminate a value chosen deterministically (with DET()) from the
proposals set (lines 4-7). All processes DECIDE on the value imposed
by the leader (lines 19-20). Note that a leader may or may not have
received proposals sent from other processes (line 8) depending
whether it RECvVs them before starting to PROPOSE. This does not
affect consensus properties since the proposals set contains at least

Algorithm 2: One-way imposition (OWI). Uses RSBCAST.
All processes call PROPOSE within a fixed time window A,,.

1 leader «— mIN(P)
2 proposals «— 0
3 decision «— L

4 to PROPOSE (v):
5 proposals < proposals U {v}
6 if self = leader then
7 ‘ RSBCAST (DET (proposals)) // pick DETerministically
else
3 SEND (v) to leader
L START (timer, Ay + A; + Ap)

10 upon TIMEOUT (timer) and decision = L:
1 P « P\ leader

12 leader «— miIN(P)

13 if self = leader then

14 ‘ RSBCAST (DET (proposals))
else

15 L SEND (v) to leader

16 START (timer, Ay + A; + Ap)

17 upon RECV (v):

18 L proposals < proposals U {v}
19 upon DELIVER (0):

20 if decision = () then

21 L DECIDE (0)

decision « v

23 upon NET-FAULT (timer):
24 LQLTIT

the leader’s value (preserving Validity) and once a value is proposed,
RSBCAST guarantees that it is DELIVERed by all correct processes
within Aj. The timeout of Ay + A; + Ap (line 9) ensures that, if
the leader is correct, every correct process receives its imposed
message through RsBCAST before triggering leader election (lines
10-12). If the leader fails before triggering RSBCAST, all processes
will deterministically elect the next leader in the new round (i.e. at
TIMEOUT, lines 10-12). The algorithm proceeds until at least n — 1
timeouts (i.e. rounds) in the case n—1 failures occur and the process
with the largest 1D is the only correct process. Processes safely quit
if RSBCAST signals a network fault (NET-FAULT) since they cannot
know whether all processes have received the leader’s decision.

LOWI (Alg. 3). The full algorithm runs a series of synchronized
(within Ayy) consensus instances, takes REQUESTS from clients, PRO-
posEs them through OWI, and stores them into the decisions log.
Processes take REQUEST values asynchronously and store them into
the pending variable. In every synchronous round of the Loop, pro-
cesses check whether the current consensus instance has ended
with a decision through the cins and lins variables, which respec-
tively indicate the current consensus instance and the last consensus

Nano-consensus: ultra-fast, quorum-less coordination on the wire

(To appear at ACM Symposium on Cloud Computing 2025)

Algorithm 3: Looped one-way imposition (LOWI). Uses
OWIL All processes start within a fixed time window A,,

1 pending «— 0
2 decisions « []
3 cins «— 0 // current consensus instance

4 lins <0 // last consensus instance with a decision

5 to REQUEST (v):
6 L pending «— pending U {v}

7 upon Loop and cins = lins:

8 cins « cins+1
9 if pending # () then
10 PROPOSE (v) | v € pending
1 pending «— pending \ {v}
else
12 L PROPOSE (L) // heartbeat value

13 upon DECIDE (0):
14 if v = L then

15 ‘ cins « lins // no decision, rerun this instance
else

16 decisions[cins] « v

17 lins « cins // go to next instance

18 upon QUIT:
19 L exit Loop

instance in which processes DECIDEd (line 7). Note that OWI guar-
antees that all DECIDE in the same round even in the occurrence
of failures, preserving synchronization across multiple consensus
instances. In a “proposal” round, processes either PROPOSE a value
from the pending queue, or PROPOSE a heartbeat value (lines 7-12)
in case there are no pending proposals. This is a key mechanism
preventing non-leader nodes to time out on correct leaders. As a
consequence, processes might DECIDE heartbeat values, in which
case LOWI makes sure to repeat the same consensus instance (lines
13-15). Decisions of values coming from client requests are instead
added to the decisions log, and the algorithm moves on with the
next instance (lines 16-17). Note that Processes exit the Loor when
OWTI calls QuIT in consequence of a NET-FAULT.

Correctness. For Validity, OWI ensures that processes DECIDE
values from the leader’s proposals set (Alg. 2, line 5). In LOWI, these
can be either heartbeat values (L) or values previously PROPOSEd.
Only the latter are stored in the decisions log (Alg. 3, lines 14-15).
Integrity is guaranteed by line 20 in Alg. 2. Regarding Termination,
the TIMEOUT mechanism in OWI ensures that a correct leader will
propose within n — 1 rounds at most. To show Uniform agreement
we argue that only one process at any time can RSBCAST, i.e., there
can only be a leader for every consensus instance. This is ensured
by the timing guarantees of our system, namely upper-bounded
interaction latency Ay among Nano-consensus nodes, and the initial
synchronization window Ay, . The TIMEOUT of Ar+ Ay (Alg. 2, line
9), and the reliability of RSBCAST ensure that either all processes

DELIVER within a given time before the timeout, or the sender has
crashed hence the message will never be received.

Complexity and optimizations. OWI solves consensus in 1 mes-
sage delay in failure-free executions, but requires initial synchro-
nization to make sure all replicas start within Ay, which in practice
consists in at least another message delay. LOWI mitigates this by
synchronizing nodes only once at the beginning of the consensus
series, then maintaining synchronization by running back-to-back
consensus instances. This is the key mechanism to bridge asynchro-
nous client requests with efficient synchronous algorithm execution,
using heartbeats to maintain synchronization when requests are
delayed. OWI is more efficient than classical synchronous consen-
sus by Lynch [57] in which processes disseminate O(n?) messages
per round and different correct processes might decide in different
rounds, not allowing for our “looped” optimization. To mitigate
excessive heartbeat traffic, pending proposals can be accumulated
by setting a loop period higher than the incoming proposal rate
and vice versa when a large number of proposals need to be “con-
sumed”. While likely only the leader ends up proposing its values
in OWI, this is a common feature of most consensus/SMR algo-
rithms [7, 10, 31, 86] and is mitigated by directing requests only to
the leader. DET in Alg. 2 chooses non-heartbeat values for efficiency.

RSBCAST and multiple network failures. RSBCAST mitigates net-
work failures with redundancy, leading to an extremely low proba-
bility (at worst once every 6 years, cf. § 3.3) of any multiple network
failures to affect all redundant trees. In reality, the actual probability
of such failures affecting consensus safety is even lower: only net-
work failures which create network partitions (whether transient
or not) are critical. Furthermore, this risk is null when redirecting
client request to a leader and not to replicas which is a common de-
ployment adopted in Paxos/Raft -based algorithms [7, 10, 48, 86]. As
long as the leader continues its operation, no requests are forwarded
to other replicas, hence preventing uniform agreement breach by
deployment.

5 IMPLEMENTATION

5.1 Development

We designed and implemented Nano-consensus on the F2000X-PL
Altera smartNIC [37], leveraging the on-board SoC and Intel Ag-
ilex 7 FPGA [6] for software/hardware co-design. The built-in PP
(refer to Fig. 2) was programmed to provide ingress packet classi-
fication and routing among the physical ports, the SoC, the host
and our custom hardware module. The latter was compiler onto the
board’s application stack acceleration framework (ASAF) module
and amounts to a total of 803 lines of code in System Verilog and
VHDL. Iterative testing for the RTL module was done with Mod-
elSim [63]. We developed the following software components to
complement the hardware module: a Rust CLI app for controlling
and monitoring (383 lines of code), PP Bash configuration scripts
(142 lines of code) and a high-performance thin layer in eBPF’s
XDP to provide application specific logs (412 lines of code).

Davide Rovelli, Christian Faerber, Graham McKenzie, Ali Pahlevan, Sina Darabi, Patrick Jahnke, and Patrick Eugster

LOWI LEADER
counter
TIMEOUT send
(register SW | D Toutput
SW register trigger
<] Lowl
counter
sw HEARTBEAT
register

recv input trigger

Figure 4: Simplified circuit schematics of LOWI. “SW” labels
define components configurable from software.

5.2 LOWI system integration

Fig. 4 shows how LOWI is synthesized on the consensus core mod-
ule and interacts with the other modules via triggers. In the follow-
ing we describe how LOWI is integrated in our design on Altera
F2000X-PL FPGA-smartNICs. Please see § 3 for architecture details.

Initial synchronization. The start of the sequence simply consists
in a “start” message which the designated leader send to the follow-
ers in order to activate their receive input trigger, which resets and
start the LOWI counter. The timeout register is previously set to
at least double the maximum latency observed in the system plus
the maximum clock drift, i.e., the initial synchronization window
Aw = Aj, hence TIMEOUT duration > 2Aj + drift. We rely on
modern FPGAs’ very robust clocks with negligible bounded drift
(as assumed by recent systems, e.g., [31, 41, 72]).

Main operation. After setting FPGA memory and registers from
software, clients send consensus requests to the leader node di-
rectly on the FPGA-smartNIC as typically done in other consensus
setups, e.g., Waverunner [10]. The on-board PP routes requests to-
wards the packet parser (cf. Fig. 2), which extracts the payload and
passes to the packet generator which prepares a PROPOSE packet
and enqueues it into the FIFO. Once the LOWI counter of the leader
triggers the next send signal (AND logic comparison among LOWI
counter, blue registers and heartbeat register in the circuit), the PP
is set to RSBCAST the decision to the followers, the host DMA and
as well as replying directly to the clients with an “OK” response.
This ensures minimal server response latency since the packet has
to only do a loopback inside the FPGA. Packet reception at the
followers (REcV) triggers LOWI, resetting its counter and prevent-
ing it from reaching the value of the timeout register previously
set from software. The packet is forwarded up the host DMA (i.e.,
via DECIDE) without further processing. Note that the reception of
requests at the leader does not trigger a LOWTI receive as it would
compromise the timeliness of the loop period. The LOWI counter
is reset after every successful send, creating the loop. Note that the
loop period (i.e., heartbeat register in Fig. 4) might be set as small
as the FPGA clock allows (~8ns) order to keep multiple consensus
instances in flight for very high throughput.

Heartbeats and leader election. The LOWI circuit triggers a send
signal even if there are no incoming requests and the FIFO is empty.
In such case, a pre-filled, static heartbeat packet (L in Alg. 3) is sent

instead from memory, ensuring that followers never timeout on
a leader that is still alive. Upon leader failure, the LOWI counter
in each follower hits the timeout value, outputting a signal which
increases the leader counter. This constitutes our deterministic
leader election, since we assign monotonically increasing 1Ds to all
processes during the initial configuration. The follower with 1p =
leader 1D + 1 is elected as next leader and starts Loop.

Flawless joining in state machine replication. New processes can
join an existing cluster as followers without disrupting an on-going
execution. At the start of a join procedure, a follower sets itself in
a “joining” state, enables the consensus engine, and starts logging
the decision values of the running consensus instances. In parallel,
the control software sends a request to any other node asking for
the current state and the latest consensus instance it has recorded.
After the state transfer, the new node will apply previously recorded
changes starting from ¢ + 1 and set itself as “active”. Before this
last step it might be necessary to increase the timeout value in
case the follower is “further away” than any other followers in
the group. This can be achieved by the software layer through a
new consensus instance. Reducing the timeout value would require
halting the system, but it is unlikely required since high timeout
values do not impact failure-free performance.

6 EVALUATION

We evaluate Nano-consensus by comparison with state-of-the-art
services and applications, addressing four research questions:

RQ1: How stable and reliable are Nano-consensus remote pro-
cess interactions?

RQ2: How well does Nano-consensus perform?

RQ3: What is the impact of failures and joins on Nano-consensus
availability?

RQ4: How and by how much does Nano-consensus improve
real-world applications?

6.1 Methodology

Evaluation cluster. We implement and evaluate Nano-consensus
in a production datacenter of a major cloud service provider. The
evaluation cluster consists of 3 Altera F2000X-PL [37] attached
to 2 Dell R740 servers, each equipped with 2 Intel Xeon Gold
6138 at 2.00GHz (40cores, 80 threads) and running CentOS 8 [17].
F2000X-PL’s SoCs are equipped with Intel Xeon D-1736 CPUs at
2.30GHz (8 cores, 16 threads) running Rocky Linux 8.9[71]. For most
tests, we connect both 100Gbps QSFP28 ports of every F2000X-PL
to a 100Gbps TOR switch. To benchmark other applications, we use
Mellanox ConnectX-4 100 GbE [59] (making sure that bandwidth
is not limiting maximum achievable throughput), connected to the
same switch. For multi-switch evaluation we use an additional clus-
ter of 2 Cloudlab [26] x1170 servers, connecting their ConnectX-5
NICs to a number of Dell s4048 type switches, as outlined later.

Comparison. We compare Nano-consensus with three different
OS-bypass datapaths, namely FPGA-smartNICs, RDMA, and eBPF
XDP, chosen for their relevance and widespread adoption. For each
technology, we compare Nano-consensus with the following state-
of-the-art consensus systems:

Nano-consensus: ultra-fast, quorum-less coordination on the wire

(To appear at ACM Symposium on Cloud Computing 2025)

------ Nano-consensus --- AF XDP
UDP —-= RDMA

=)

J—
(=]
L

=

Latency (ns)
=)

Oth 95th 99th 99.99th 100th

Percentile (# of packets)

Figure 5: Maximum interaction (communication + process-
ing) latency over 40 days (115 billion packets).

Waverunner [10], hardware-accelerated Raft on Alveo U280[11]
FPGA-smartNICs, the fastest SMR module to our knowl-
edge;

Electrode [86], XDP-based consensus service used to implement
viewstamped replication [54];

Mu [7], a state-of-the-art RDMA-based consensus algorithm.

We also compare the integration of Nano-consensus into two
widely used applications: Redis [68], a distributed key-value store
and Zookeeper [35] against their native performance. For Redis, we
also compare against RedisRaft [69], an official module developed
by RedisLabs using Raft for SMR.

6.2 RQ1: interaction stability

Our first experiments evaluate stability and reliability of time bounds
on interaction latency, a core aspect of Nano-consensus’s design.

Long-running latency. This benchmark consists in running a sim-
ple ping-pong protocol between the leader and the two followers
and computing the worst leader-to-follower, one-way latency for
every round. We run our benchmark for 40 consecutive days collect-
ing measurements for a total of 115 billion packets, more than 650x
the amount of similar stability evaluations [41] and 56X the amount
used in a widely-cited TCP reliability study [77]. Nano-consensus
packets are sent at a constant throughput of ~400Mbps through
Nano-consensus’s PP. For each packet, we log both Nano-consensus
latency and UDP software latency at the SoC, in order to show the
cost of traversing the network stack. We also evaluate latency of
RDMA Unreliable Connection (UC, UDP equivalent) and XDP XSK
sockets through the same ping-pong test, but using a much smaller
sample base of 10 million packets (giving them an advantage over
Nano-consensus). We use stress-ng [78] and iPerf [38] to generate
periodic spikes of maximum CPU and network utilization. Fig. 5
shows the results. Nano-consensus exhibits the lowest and the most
stable latency for 100% of the measured packets with an average
latency of 1.41ps and a maximum of 1.48us and no packet loss. All
other approaches show a sharp increase in maximum latency at the
tail of more than 100X, indicating the limits of software approaches
beyond some 99 xth percentile, especially if we consider that they
were run for a fraction of the time only. This benchmark showcases
the interaction stability of modern datacenter network hardware,
which makes the probability of failure (breaking an upper time
bound) smaller than services that are widely considered reliable,

[Nano-consensus [AF XDP
UDP [—J1 RDMA
Z 10" 3
7
210
5 = b
0y ©
2 3 4

Number of swithches

Figure 6: Interaction latency across multiple switches. Hori-
zontal dashes represent median values, whiskers 0.01™" and
99.99th percentile latency, circles are outliers.

e.g., TCP’s detection of corrupted packets (TCP + Ethernet CRC
checksum, see § 3.3).

Multi-switch and packet loss. We also run two additional mi-
crobenchmarks in the CloudLab [26] setup to evaluate the stabil-
ity of hardware processing and Nano-consensus communication
layer in the core of the network. We manually reserve the highest-
priority queues in the switches and use Mellanox ConnectX-5 NIC
hardware timestamp [62] to evaluate the FPGA-smartNIC data-
path, which is equivalent to Nano-consensus timestamps in the
consensus engine. We use the previously mentioned ping-pong ap-
plications with varying network load generated with iperf3 [38].
For this experiment, the switches are connected in series with two
nodes connected at opposite ends, so a packet must traverse all
hops. Fig. 6 shows the effects on latency of scaling to 2, 3 and
4 switches under minimal network traffic. The figure confirms
Nano-consensus’s stability: each switch adds around 4ps latency,
respectively 10.5 + 0.15ps, 14.4 + 0.2us and 19.6 + 0.25us average
with jitter (intended as max - min) within the error value. Other
technologies show much higher jitter in the order of hundreds of
us. Interestingly, the average of RDMA and XDP is comparable or
even smaller than Nano-consensus, which can be explained by the
batching and interrupt coalescing adopted by the former two to
save the CPU from costly frequent interrupts, resulting in peaks
of latency followed by a long series of packet with latency that
is shorter than the wire speed. However, given their high jitter,
these approaches are unsuitable for practical synchrony. The sec-
ond microbenchmark (Fig. 7) compares packet loss with varying
network load between Nano-consensus path and the normal net-
work path depicted in Fig. 3, in the 4-switch topology. Here we can
observe the effect of highest-priority queue reservation and rate
limiting: normal traffic is dropped by the switches and endhosts
while Nano-consensus packets are never dropped.

6.3 RQ2: consensus performance

Our second set of benchmarks aims to evaluate latency of consen-
sus instances at increasing throughput with a traffic generator to
test the limit of our system. Since all compared approaches use a
leader-based consensus algorithm, we measure the latency from
when the leader accepts a PROPOSE request to when it DECIDE as

Davide Rovelli, Christian Faerber, Graham McKenzie, Ali Pahlevan, Sina Darabi, Patrick Jahnke, and Patrick Eugster

2
7 204 --#- Nano-consensus
% normal path
2
]
= 04 ‘;T“.*.........I**.I.* *I.I*Y
20 40 60 80 100 120
Network load %
Figure 7: Comparison of packet loss between

Nano-consensus packets and normal packets at increasing
network load. Both flows go through the same NICs
and switch. Thanks to rate limiting and traffic priority,
Nano-consensus packets are never lost, even when the
incoming traffic exceeds network capacity (120%).

well as the end-to-end latency at the client side for fair compar-
ison (compared approaches are evaluated in the same manner).
Clients send requests directly to the leader using small random
packets — 50B for Nano-consensus and Waverunner and 64B for
Mu and Electrode, disadvantaging the former two approaches for
total goodput (i.e. payload vs packet headers). The packets include
44B of Ethernet, IP and UDP headers, chosen for fair comparison
to Waverunner’s evaluation [10]. Unlike Mu and Electrode, we do
not deploy Waverunner due to the source code being unavailable.
Instead, we report Waverunner’s results from their paper [10], us-
ing an identical network setup, and only substitute the RTT of our
system, leaving the throughput as it is. We include one consensus
request per packet with minimal payload size, intentionally avoid-
ing client-side batching (which would trivially increase throughput
for all appreaches) to show the base performance of every approach.

Throughput and network utilization. Fig. 8 shows median through-
put results in terms of consensus instances per s. Nano-consensus
achieves 62.4 Mpps using the DPDK testpmd tool [25] with receive-
side scaling over 4 SoC cores enabled in F2000X-PL for high- perfor-
mance software reception. The value, limited to avoid packet loss
in software, is lower than Nano-consensus Nano-consensus’s core
processing rate (121Mpps), i.e. the theoretical bottleneck of the
system; fine-grained performance tuning of the DPDK testpmd
is likely to further increase software throughput [24] up to net-
work bandwidth saturation (100Gbps). Nano-consensus improves
over Waverunner, the fastest consensus system in literature, by
~2.4X. With both systems using FPGA-smartNICs and only being
limited by the processing speeds of the hardware modules and
by the underlying network bandwidth, Nano-consensus’s perfor-
mance improvements come from its algorithmic advantage over
quorum-based approaches. Waverunner uses Raft which adds n -1
(vs 0 for Nano-consensus) acknowledgment messages for the leader,
dramatically impacting its bandwidth usage in the network which
Waverunner saturates at 1.25% goodput/single link utilization ratio,
as shown in Tab. 2. Nano-consensus achieves a strongly increased
goodput of 12% (~4.8x) with only twofold network redundancy,
leaving additional room for 75.1 Gbps at the same rate, which could
be achieved with client-side or server-side batching by increas-
ing the payload by 150B (minus the additional Ethernet field —
7B preamble, 1B packet start delimiter and 12B inter-packet gap).
Software-only approaches exhibit similar results as Waverunner

10

Table 2: Maximum goodput achievable with relative network
utilization for small requests. We assume 2-level redundancy
for both approaches.

Packet size Maximum Leader
(44B header) goodput bandwidth
(200Gbps)
Nano-consensus 50B 2.99 Gbps 24.96%
Waverunner [10] 50B 1.25 Gbps 50%
4_0 4
—&— Nano-consensus

Waverunner
Mu
Electrode

-

Latency (us)
=

“. M99

0 20 30 4 0 60
Consensus instance rate (Mpps)

|

Figure 8: Consensus performance measured at the leader.
Measurements at clients add an additional ~40ps for every
approach due to client-server RTT.

since they are also using acknowledgements, and furthermore can-
not saturate the network bandwidth with small requests (Fig. 8)
since they limit software packet processing overhead with batching
in order to keep CPU utilization low.

Latency. Nano-consensus exhibits a constant median latency of
1.03ps (Fig. 8), limited by the loopback speed of F2000X-PL NIC
through our custom hardware module. It improves over by over
~3.82x w.r.t. Waverunner’s constant latency, demonstrating the
stability of FPGA-smartNIC-based hardware processing. Additional
testing shows that packet sizes up to 1500B marginally increase
the processing latency by 10%, while the 99 percentile latency
is within 3% for hardware approaches. Mu and Electrode show
5.38% and 7.39x higher latency respectively and sharp increases
when approaching their throughput limit, following a “hockey stick”
pattern. For completeness, we performed the same measurements
from the client side to obtain the end-to-end latency from a client
perspective. Clients add an additional ~40ps on average for all
approaches, corresponding to the RTT between the clients and the
leader in our setup (both connected to 1 TOR switch).

6.4 RQ3: fault tolerance and availability

We evaluate Nano-consensus’s fault tolerance by injecting failures
at the leader of a cluster, which results in a leader election round in-
volving no explicit communication; followers simply time out when
they stop receiving messages from the leader (data or heartbeats).
While follower failures do not cause downtime in any of the com-
pared approaches, a substantial gain of Nano-consensus is that it
tolerates f = n—1 processes failures while compared quorum-based
approaches require 2f+1 processes, as shown in Tab. 3. We evaluate
the downtime impact of a new follower joining an existing cluster.

Nano-consensus: ultra-fast, quorum-less coordination on the wire

(To appear at ACM Symposium on Cloud Computing 2025)

Table 3: Leader election and downtime resulting from a new
follower joining an existing cluster. Slanted numbers are
taken from respective publications and blank values were
not addressed therein. Time values are in ps.

Tolerated Failover Downtime
failures latency on node
(50th/99thy join
Nano-consensus n—1 2/2 0
Consensus in a Box [39] L”T_IJ 60/60 2E5
Waverunner [10] L"T_IJ 1E6/1E6 2E5
uKharon [31] (2] 50/139

Our LOWTI algorithm (Alg. 3) is designed for high-availability and
can flawlessly react to changes in the cluster, as discussed below.

Leader election. Unlike common solutions, our timeouts are op-
timal as they can rely on the stable latency (Ar = 1.41ps) from the
communication layer and precision of the hardware sending rate
(TLoop = 8ns), and therefore can be safely set at A; + Troop We
choose 2ys in our experiments (including a safety margin), achiev-
ing a 30X improvement against Consensus in a Box [39] and 25x
over uKharon [31], respectively the fastest hardware and software
solutions to our knowledge, as revealed by Tab. 3. Nano-consensus
also improves over Waverunner’s conservative timeout by 500000x.
However, we believe that Waverunner’s performance is very likely
to sustain more aggressive timeouts.

Follower joins. Another benefit of LOWI is that it enables fol-
lowers to join an existing cluster without disrupting the ongoing
operation. For this evaluation we use Nano-consensus to imple-
ment a basic SMR service which uses a leader to deterministically
order incoming requests, run a consensus instance with the request
number and writes it to a log. Tab. 3 shows that Nano-consensus
achieves 0 downtime thanks to the parallel state transfer strategy
described in § 5.2. Once again, this results in a substantial advantage
over quorum-based approaches which need to halt operations and
wait for a follower to synchronize its state with the leader (200ms
in Waverunner and Consensus in a Box evaluations).

6.5 ROQ4: real-world applications

Our final sets of benchmarks analyzes Nano-consensus’s perfor-
mance as part of Redis and Zookeeper. We evaluate latency and
throughput from external clients connected to our 3-node cluster
via a TOR switch. As for previous benchmarks, all requests are
forwarded directly to the leader. For both applications, we build
custom sequential (i.e. blocking on server response) clients which
send Nano-consensus requests to the cluster, which our system
safely replicates. The leader then acknowledges the request to the
client and forwards to the respective hosts at the same time, allow-
ing the application to process requests in the background. We use
a thin XDP layer and receive-side scaling on the host to efficiently
process incoming requests and log them into in-memory maps. We
modify Redis and Zookeeper to read from these logs to process re-
quests and refer to these versions as Redis-NC and Zookeeper-NC
respectively. We evaluate only SET requests but not GET requests,

11

Redis —#—Redis-NC
--®--RedisRaft —&— Zookeeper

Zookeeper-NC

% 1 fg—e o s Zoo00f pr—

L ‘,__.__k——t

=] 7y

< 0.13¢..... =

_E, @ (I Py 2 100 1

a =

S0l ——— | e e G e e

)

17 . . . ©v 10k . .

1 2 3 1 2 3
Nodes Nodes

Figure 9: SET request latency and throughput of Redis and
Zookeeper with different replication algorithms and num-
bers of nodes. y-axis is logarithmic.

as all approaches would simply return the requested value, adding
no overhead to native performance.

Results. Fig. 9 depicts throughput (left) and latency (right) at
small scale n = 1, 2,3. (At larger scales the performance of com-
pared approaches degrades quickly.) Nano-consensus applications
outperform the native SMR approaches RedisRaft and Zookeeper
by at least 10x throughput and at least >11.6x lower latency. Per-
formance gains come from the fast hardware response directly
from the FPGA-smartNIC which avoids traversing the server net-
work stack, achieving improvements even on original Redis un-
replicated by 4.7x throughput and 11.6x latency. Both Redis-NC
and Zookeeper-NC show very close performance since they use the
same custom UDP clients. These have suboptimal packet processing
capabilities which limits maximum throughput to 846Kpps, leaving
a lot of performance on the table as shown by the results achieved
in § 6.3 with the DPDK test suite. Further engineering effort (e.g.
using DPDK, RDMA) could easily bring the performance up to tens
of Mpps as shown by several works [24, 28, 46]. The obtained re-
sults are a good representation of Nano-consensus benefits with an
average programming effort. In addition, note that the fault toler-
ance of Nano-consensus is increased, so for instance to be able to
tolerate f = 2 failure(s) the performance of Nano-consensus-based
Zookeeper on n = 3 nodes would have to be compared to that of
original ZooKeeper on n = 5 (cf. Tab. 3).

7 NANO-CONSENSUS IN THE BIG PICTURE

We position Nano-consensus in a broader context delineating where
and how it should be used, its benefit-cost tradeoff and future work.

Application notes. Nano-consensus is designed for datacenters
and relies on network predictability, programmability, and speed. It
primarily targets highly available core services with high through-
put and low latency requirements, but can be also used as accelera-
tor to efficiently “consume” a large volume of accumulated requests
when latency is not a primary concern. The latter scenario allows
for high-level traffic scheduling based on network utilization, e.g.,
intermittent enabling of Nano-consensus engine to compensate
external, bursty traffic, as well as mitigating the overhead caused

Davide Rovelli, Christian Faerber, Graham McKenzie, Ali Pahlevan, Sina Darabi, Patrick Jahnke, and Patrick Eugster

by heartbeat messages. Nano-consensus is best used in combina-
tion with a high-performance packet processing software layer to
avoid throughput limitation (e.g., see UDP clients in § 6.5) or cause
unwanted packet loss. Several modern systems such as eRPC [46],
DPDK [24], or eBPF (see server-side software layers in § 6.3 and
§ 6.5) can easily reach 10Mpps per core, especially considering that
Nano-consensus takes away the send overhead of proposal mes-
sages. Additional engineering effort in implementing a batching
module aggregating multiple requests together as done by Waverun-
ner [10] would also greatly mitigate the pressure on the endhost.

Resource footprint. One of the main benefits of using smartNICs
is alleviating the burden on the host CPU. Nano-consensus takes
on packet processing and all consensus logic, leaving only asyn-
chronous reception to the host (i.e. which can be deferred at later
times hence relieved from latency and throughput requirements).
In terms of FPGA footprint, LOWTI uses less than 1% of the available
resources in the F2000X-PL board, leaving room for 100 equiva-
lent modules available for scaling up. Nano-consensus’s highest-
priority queue reservation can be shared with when using other
concurrent high-priority services by decreasing Nano-consensus’s
sending rate. Moreover, explicit resources reservation is often in-
trinsic to the deployment of highly available core services[27, 88]
to avoid co-locating too many other communication-intensive pro-
cesses. The same applies for network redundancy, which is also
commonly available by default in datacenter network topology
(e.g., fat-tree). Benefits of redundancy and resource reservation can
easily outweigh the cost of resource reservation, as shown in § 6.3.

8 RELATED WORK

Coordination with stable interactions. Traditionally, distributed
systems are designed assuming that messages can be arbitrarily de-
layed by the network and the packet processing stack. This common
belief is challenged by the rise of more programmable, precise, and
high-performance networks and endhosts [73, 74]. A number of sys-
tems assume stable communication and stable processing as a given
for, e.g., optimal weak failure detectors [8], leader election [75]. Sev-
eral recent works assume synchrony in wide-area scenarios with
Byzantine failures in the context of blockchains. BoundBFT [60]
investigates to what extent synchrony can be violated in practice
without hampering consensus correctness. AlterBFT [61] is a novel
BFT consensus protocol which assumes synchrony for short mes-
sages only, significantly improving latency compared to fully syn-
chronous protocols while retaining throughput and fault tolerance.
Unlike nano-consensus, these and other BFT algorithms [5, 33, 55]
assume a classical software stack without providing any concrete
underlying system to enforce such assumptions. Seminal work on
deterministic distributed processes was introduced by DDOS [34],
however with significant overhead in its remote process interac-
tion. X-Lane [41] introduces a communication layer relying on
programmable networks and process isolation, resulting in upper
time bounds in interaction which are used to accelerate a Raft-
based consensus service. However, this approach - inherited by
FiDe [72] for reliable failure detection — requires fine-tuning of the
OS which can be easily misconfigured affecting interaction stability.
Nano-consensus takes a step further by pushing logic to network

12

hardware, dramatically reducing interaction jitter and using it to
devise a custom consensus algorithms with optimal complexity.

Distributed algorithms on network hardware. Consensus in a
Box [39] is a seminal work which pushes Zookeeper Atomic Broad-
cast (ZAB) off the critical path by fully porting it to FPGA. Waverun-
ner [10], the most recent and fastest work to our knowledge, takes
a different approach and moves only the failure-free operations of
Raft onto FPGA-based smartNICs, leaving failover routines to the
software. Paxos in the NIC [14] proposes a high-level abstraction
to offload Paxos-like consensus algorithm on the NIC with quanti-
tative analysis to prove its benefits and an early-stage prototype
with limited evaluation. NanoPU [36] proposes a more generic dat-
apath for low-latency communication by a custom communication
channel which writes directly to the CPU registers, bypassing PCle
bus and OS jitter sources. While the authors simulate their design
with Raft, NanoPU does not provide algorithmic novelty and does
not provide a physical implementation. Thanks to its novel design
on stable interaction and optimal algorithm (e.g., with respect to
classical synchronous consensus [57]), Nano-consensus fully ex-
ploits hardware properties and uses an optimal consensus algortihm
improving over Waverunner throughput, latency and availability.

Fast software packet processing. High tail-latency of a service can
impact client retention and cause loss of revenue [19, 20, 82]. This
led to the development of a plethora of systems which optimize tail-
latency for datacenter remote procedure calls through specialized
networking stacks at the endhosts [13, 21, 28, 46, 46, 52, 65, 66, 85].
These works achieve ps tail-latency through optimal endhost packet
processing but fail to prevent outliers beyond the 99.xth percentile.
QJump [30] leads the way to achieve minimal, stable tail-latency in
networks but does not consider jitter at the endhost, leading to the
same issue. Nano-consensus exploits a custom hardware design on
FPGA-smartNICand reservation of priority queues in the network
to achieve ultra-stable interactions and server-response with 100th
percentile tail-latency of as low as 1.03ps, outperforming software
state of the art in latency, throughput and failover time.

9 CONCLUSIONS

We propose Nano-consensus, a hardware-supported consensus en-
gine which runs on FPGA-smartNICs. Unlike common approaches
accelerating existing algorithms, Nano-consensus exploits and sup-
ports the stability of network hardware to introduce a novel con-
sensus primitive which is efficient for series of consensus instances.
Nano-consensus provides optimal message complexity and can run
as fast as the underlying network allows with ns-scale latency,
outperforming state-of-the-art hardware and software consensus
implementation by 3.82x and goodput by 4.8%, substantially im-
proving availability upon failures.

ACKNOWLEDGEMENTS

This work was supported by Swiss National Science Foundation
grants #192121 and #197353, SAP grant DEDIC, Hasler Foundation
grant DEEDS, and Meta Research in Distributed Systems program.

Nano-consensus: ultra-fast, quorum-less coordination on the wire

(To appear at ACM Symposium on Cloud Computing 2025)

REFERENCES

(1]

[9

=

[10]

[11]

[12

[13]

[14

[15

[16]

[17]

[18]

[19

[20]

[21]

[22]

[23]

[24]

Apache Kafka Synchronous replication. https://cwiki.apache.org/
confluence/display/kafka/kafka+replication#:~:text=In%20primary-
backup%20replication%2C%20the, write%20t0%20the%20remaining%20replicas.
Online; accesses 10-Jan-2025.

Synchronous replication in postgresql. https://www.crunchydata.com/blog/
synchronous-replication-in-postgresql. Online; accessed 10-Jan-2025.

IEEE 802.3. Ieee draft standard for ethernet amendment: Media access control
parameters for 800 gb/s and physical layers and management parameters for 400
gb/s and 800 gb/s operation. IEEE P802.3df/D3.0, July 2023, pages 1-286, 2023.
Ittai Abraham, Dahlia Malkhi, Kartik Nayak, Ling Ren, and Maofan Yin. Sync
HotStuff: Simple and Practical Synchronous State Machine Replication. In 2020
IEEE Symposium on Security and Privacy (SP °20), volume 1, pages 106-118, 2020.
Ittai Abraham, Kartik Nayak, and Nibesh Shrestha. Optimal good-case latency
for rotating leader synchronous bft. In 25th International Conference on Principles
of Distributed Systems (OPODIS 2021), 09 2021.

Agilex™ 7 FPGA and SoC FPGA. https://www.intel.com/content/www/us/en/
products/details/fpga/agilex/7. html. Online; accessed 14-Jul-2025.

Marcos K. Aguilera, Naama Ben-David, Rachid Guerraoui, Virendra J. Marathe,
Athanasios Xygkis, and Igor Zablotchi. Microsecond consensus for microsecond
applications, November 2020.

Marcos K. Aguilera, Carole Delporte-Gallet, Hugues Fauconnier, and Sam Toueg.
On implementing omega in systems with weak reliability and synchrony as-
sumptions. Distributed Computing, 21(4):285-314, 2008.

Alibaba Cloud ECS. Deep Dive into Alibaba Cloud F3 FPGA as a Service Instances
. https://www.alibabacloud.com/blog/deep-dive-into-alibaba-cloud- f3-fpga-as-
a-service-instances_594057. Online; accessed 10-Jul-2025.

Mohammadreza Alimadadi, Hieu Mai, Shenghsun Cho, Michael Ferdman, Peter
Milder, and Shuai Mu. Waverunner: An elegant approach to hardware acceler-
ation of state machine replication. In 20th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 23), pages 357-374, Boston, MA, April
2023. USENIX Association.

Xilinx alveo 280 product frief. https://www.xilinx.com/content/dam/xilinx/
publications/product-briefs/alveo-u280-product-brief.pdf. Online; accessed 14-
Jul-2025.

Amazon EC2 F2 Instances. https://aws.amazon.com/ec2/instance-types/f2/. On-
line; accessed 10-Jul-2025.

Adam Belay, George Prekas, Mia Primorac, Ana Klimovic, Samuel Grossman,
Christos Kozyrakis, and Edouard Bugnion. The ix operating system: Combining
low latency, high throughput, and efficiency in a protected dataplane. ACM
Trans. Comput. Syst., 34(4), dec 2016.

Giacomo Belocchi, Valeria Cardellini, Aniello Cammarano, and Giuseppe Bianchi.
Paxos in the NIC: Hardware Acceleration of Distributed Consensus Protocols.
In 2020 16th International Conference on the Design of Reliable Communication
Networks DRCN 2020, pages 1-6, March 2020.

Christophe Bobda, Joel Mandebi Mbongue, Paul Chow, Mohammad Ewais, Naif
Tarafdar, Juan Camilo Vega, Ken Eguro, Dirk Koch, Suranga Handagala, Miriam
Leeser, Martin Herbordt, Hafsah Shahzad, Peter Hofste, Burkhard Ringlein, Jakub
Szefer, Ahmed Sanaullah, and Russell Tessier. The future of fpga acceleration
in datacenters and the cloud. ACM Trans. Reconfigurable Technol. Syst., 15(3),
February 2022.

Christian Cachin, Rachid Guerraoui, and Lus Rodrigues. Introduction to Reliable
and Secure Distributed Programming. Springer Publishing Company, Incorporated,
Heidelberg, Germany, 2nd edition, 2011.

Centos - download. https://www.centos.org/download/. Online; accessed 14-Jul-
2025.

Inho Choi, Ellis Michael, Yunfan Li, Dan R. K. Ports, and Jialin Li. Hydra:
Serialization-Free network ordering for strongly consistent distributed applica-
tions. In 20th USENIX Symposium on Networked Systems Design and Implementa-
tion (NSDI °23), pages 293320, 2023.

The Cost of Latency. https://perspectives.mvdirona.com/2009/10/the-cost-of-
latency/. Online; accessed 14-Jul-2025.

OR Forum—The Cost of Latency in High-Frequency Trading. https://www.jstor.
org/stable/24540485. Online; accessed 14-Jul-2025.

Alexandros Daglis, Mark Sutherland, and Babak Falsafi. Rpcvalet: Ni-driven tail-
aware balancing of ps-scale rpcs. In Proceedings of the Twenty-Fourth International
Conference on Architectural Support for Programming Languages and Operating
Systems, ASPLOS 19, page 35-48, New York, NY, USA, 2019. Association for
Computing Machinery.

Huynh Tu Dang, Marco Canini, Fernando Pedone, and Robert Soulé. Paxos made
switch-y. SIGCOMM Comput. Commun. Rev., 46(2):18-24, may 2016.

Huynh Tu Dang, Daniele Sciascia, Marco Canini, Fernando Pedone, and Robert
Soulé. NetPaxos: consensus at network speed. In Proceedings of the 1st ACM
SIGCOMM Symposium on Software Defined Networking Research, SOSR ’15, pages
1-7, New York, NY, USA, June 2015. Association for Computing Machinery.
Intel Ethernet’ s Performance Report with DPDK 23.03. https://fast.dpdk.org/
doc/perf/DPDK_23_03_Intel_NIC_performance_report.pdf. Online; accessed

13

[25]

[26]

[27]

™~
&,

[29

[30

(31]

[32

(33]

[34

[35

(41

[42

[43]

[44]

=
i)

[46]

14-Jul-2025.

DPDK testpmd app. https://doc.dpdk.org/guides/testpmd_app_ug/. Online;
accessed 14-Jul-2025.

Dmitry Duplyakin, Robert Ricci, Aleksander Maricq, Gary Wong, Jonathon
Duerig, Eric Eide, Leigh Stoller, Mike Hibler, David Johnson, Kirk Webb, Aditya
Akella, Kuangching Wang, Glenn Ricart, Larry Landweber, Chip Elliott, Michael
Zink, Emmanuel Cecchet, Snigdhaswin Kar, and Prabodh Mishra. The design and
operation of CloudLab. In Proceedings of the USENIX Annual Technical Conference
(ATC), pages 1-14, July 2019.

Etcd hardware reccomendations. https://etcd.io/docs/v3.5/op-guide/hardware/
#network. Online; Accessed 14-Jul-2025.

Joshua Fried, Zhenyuan Ruan, Amy Ousterhout, and Adam Belay. Caladan:
Mitigating interference at microsecond timescales. In 14th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 20), pages 281-297. USENIX
Association, November 2020.

Phillipa Gill, Navendu Jain, and Nachiappan Nagappan. Understanding network
failures in data centers: measurement, analysis, and implications. SIGCOMM
Comput. Commun. Rev., 41(4):350-361, August 2011.

Matthew P. Grosvenor, Malte Schwarzkopf, Ionel Gog, Robert N. M. Watson,
Andrew W. Moore, Steven Hand, and Jon Crowcroft. Queues Don’t matter when
you can JUMP them! In 12th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 15), pages 1-14, Oakland, CA, May 2015. USENIX
Association.

Rachid Guerraoui, Antoine Murat, Javier Picorel, Athanasios Xygkis, Huabing
Yan, and Pengfei Zuo. uKharon: A membership service for microsecond appli-
cations. In 2022 USENIX Annual Technical Conference (USENIX ATC 22), pages
101-120, July 2022.

Zhisheng Hu, Pengfei Zuo, Yizou Chen, Chao Wang, Junliang Hu, and
Ming-Chang Yang. Aceso: Achieving Efficient Fault Tolerance in Memory-
Disaggregated Key-Value Stores. In ACM SIGOPS 30th Symposium on Operating
Systems Principles (SOSP "24’), page 127-143, 2024.

Kaiwen Huang, Ronghui Hou, and Yingming Zeng. Lwsbft: Leaderless weakly
synchronous BFT protocol. Computer Networks, 219:109419, 2022.

Nicholas Hunt, Tom Bergan, Luis Ceze, and Steven D. Gribble. Ddos: tam-
ing nondeterminism in distributed systems. SIGARCH Comput. Archit. News,
41(1):499-508, mar 2013.

Patrick Hunt, Mahadev Konar, Flavio P. Junqueira, and Benjamin Reed.
ZooKeeper: Wait-free coordination for internet-scale systems. In 2010 USENIX
Annual Technical Conference (USENIX ATC 10). USENIX Association, June 2010.
Stephen Ibanez, Alex Mallery, Serhat Arslan, Theo Jepsen, Muhammad Shahbaz,
Changhoon Kim, and Nick McKeown. The nanopu: A nanosecond network stack
for datacenters. In 15th USENLX Symposium on Operating Systems Design and
Implementation (OSDI 21), pages 239-256. USENIX Association, July 2021.

Intel Corporation. Intel® Infrastructure Processing Unit (Intel® IPU) Plat-
form F2000X-PL . https://cdrdv2-public.intel.com/792306/ipu-£f2000-pl-platform-
product-brief.pdf. Online; accessed 14-Jul-2025.

iPerf tool. https://iperf.fr/. Online; accessed 14-Jul-2025.

Zsolt Istvan, David Sidler, Gustavo Alonso, and Marko Vukolic. Consensus in
a box: inexpensive coordination in hardware. In Proceedings of the 13th Usenix
Conference on Networked Systems Design and Implementation, NSDI'16, pages
425-438, USA, March 2016. USENIX Association.

Joseph Izraelevitz, Gaukas Wang, Rhett Hanscom, Kayli Silvers, Tamara Silber-
gleit Lehman, Gregory Chockler, and Alexey Gotsman. Acuerdo: Fast Atomic
Broadcast over RDMA. In Proceedings of the 51st International Conference on
Parallel Processing, ICPP ’22, pages 1-11, New York, NY, USA, January 2023.
Association for Computing Machinery.

Patrick Jahnke, Vincent Riesop, Pierre-Louis Roman, Pavel Chuprikov, and
Patrick Eugster. Live in the express lane. In 2021 USENIX Annual Technical
Conference (USENIX ATC 21), pages 581-597, July 2021.

Sagar Jha, Jonathan Behrens, Theo Gkountouvas, Mae Milano, Weijia Song,
Edward Tremel, Robbert Van Renesse, Sydney Zink, and Kenneth P. Birman.
Derecho: Fast State Machine Replication for Cloud Services. ACM Transactions
on Computer Systems, 36(2):4:1-4:49, April 2019.

Xin Jin, Xiaozhou Li, Haoyu Zhang, Nate Foster, Jeongkeun Lee, Robert Soulé,
Changhoon Kim, and Ion Stoica. NetChain: Scale-Free Sub-RTT coordination.
In 15th USENIX Symposium on Networked Systems Design and Implementation
(NSDI 18), pages 35-49, Renton, WA, April 2018. USENIX Association.

L Johnsson and G Netzer. The impact of moore’s law and loss of dennard scaling:
Are dsp socs an energy efficient alternative to x86 socs? Journal of Physics:
Conference Series, 762(1):012022, oct 2016.

Flavio P. Junqueira, Benjamin C. Reed, and Marco Serafini. ~Zab: High-
performance broadcast for primary-backup systems. In 2011 IEEE/IFIP 41st
International Conference on Dependable Systems and Networks (DSN), pages 245—
256, 2011.

Anuj Kalia, Michael Kaminsky, and David Andersen. Datacenter RPCs can be
general and fast. In 16th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 19), pages 1-16, Boston, MA, February 2019. USENIX
Association.

https://cwiki.apache.org/confluence/display/kafka/kafka+replication#:~:text=In%20primary-backup%20replication%2C%20the,write%20to%20the%20remaining%20replicas
https://cwiki.apache.org/confluence/display/kafka/kafka+replication#:~:text=In%20primary-backup%20replication%2C%20the,write%20to%20the%20remaining%20replicas
https://cwiki.apache.org/confluence/display/kafka/kafka+replication#:~:text=In%20primary-backup%20replication%2C%20the,write%20to%20the%20remaining%20replicas
https://www.crunchydata.com/blog/synchronous-replication-in-postgresql
https://www.crunchydata.com/blog/synchronous-replication-in-postgresql
https://www.intel.com/content/www/us/en/products/details/fpga/agilex/7.html
https://www.intel.com/content/www/us/en/products/details/fpga/agilex/7.html
https://www.alibabacloud.com/blog/deep-dive-into-alibaba-cloud-f3-fpga-as-a-service-instances_594057
https://www.alibabacloud.com/blog/deep-dive-into-alibaba-cloud-f3-fpga-as-a-service-instances_594057
https://www.xilinx.com/content/dam/xilinx/publications/product-briefs/alveo-u280-product-brief.pdf
https://www.xilinx.com/content/dam/xilinx/publications/product-briefs/alveo-u280-product-brief.pdf
https://aws.amazon.com/ec2/instance-types/f2/
https://www.centos.org/download/
https://perspectives.mvdirona.com/2009/10/the-cost-of-latency/
https://perspectives.mvdirona.com/2009/10/the-cost-of-latency/
https://www.jstor.org/stable/24540485
https://www.jstor.org/stable/24540485
 https://fast.dpdk.org/doc/perf/DPDK_23_03_Intel_NIC_performance_report.pdf
 https://fast.dpdk.org/doc/perf/DPDK_23_03_Intel_NIC_performance_report.pdf
https://doc.dpdk.org/guides/testpmd_app_ug/
https://etcd.io/docs/v3.5/op-guide/hardware/#network
https://etcd.io/docs/v3.5/op-guide/hardware/#network
https://cdrdv2-public.intel.com/792306/ipu-f2000-pl-platform-product-brief.pdf
https://cdrdv2-public.intel.com/792306/ipu-f2000-pl-platform-product-brief.pdf
https://iperf.fr/

[47

[48

[49]

[50

[51]

[52]

[53]

[54

[55]

[60]

(61

[62]

[63]

[64]

[65]

[66

[67]

[68]
[69]

[70

[71]

[72]

Davide Rovelli, Christian Faerber, Graham McKenzie, Ali Pahlevan, Sina Darabi, Patrick Jahnke, and Patrick Eugster

Elie F. Kfoury, Jorge Crichigno, and Elias Bou-Harb. An exhaustive survey on
p4 programmable data plane switches: Taxonomy, applications, challenges, and
future trends. IEEE Access, 9:87094-87155, 2021.

Marios Kogias and Edouard Bugnion. HovercRaft: achieving scalability and
fault-tolerance for microsecond-scale datacenter services. In Proceedings of the
Fifteenth European Conference on Computer Systems, EuroSys *20, pages 1-17,
New York, NY, USA, April 2020. Association for Computing Machinery.

L. Lamport, R. E. Shostak, and M. C. Pease. The Byzantine Generals Problem.
Transactions on Programming Languages and Systems, 4(3):382-401, 1982.
Leslie Lamport. The part-time parliament. ACM Trans. Comput. Syst.,
16(2):133-169, may 1998.

Youngmoon Lee, Hasan Al Maruf, Mosharaf Chowdhury, Asaf Cidon, and Kang G.
Shin. Hydra: Resilient and Highly Available Remote Memory. In 20th USENIX
Conference on File and Storage Technologies (FAST ’22), pages 181-198, February
2022.

Jialin Li, Naveen Kr. Sharma, Dan R. K. Ports, and Steven D. Gribble. Tales of the
tail: Hardware, os, and application-level sources of tail latency. In Proceedings of
the ACM Symposium on Cloud Computing, SOCC ’14, page 1-14, New York, NY,
USA, 2014. Association for Computing Machinery.

Nangingin Li, Anja Kalaba, Michael J. Freedman, Wyatt Lloyd, and Amit Levy.
Speculative Recovery: Cheap, Highly Available Fault Tolerance with Disaggre-
gated Storage. In 2022 USENIX Annual Technical Conference (ATC °22), pages
271-286, July 2022.

Barbara H. Liskov and James A. Cowling. Viewstamped replication revisited.
2012.

Shengyun Liu, Paolo Viotti, Christian Cachin, Vivien Quéma, and Marko Vukolic.
XFT: practical fault tolerance beyond crashes. In 12th USENIX Symposium on
Operating Systems Design and Implementation, (OSDI '16°), pages 485-500, 2016.
Vincent Liu, Daniel Halperin, Arvind Krishnamurthy, and Thomas Anderson. F10:
A Fault-Tolerant engineered network. In 10th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 13), pages 399-412, Lombard, IL, April
2013. USENIX Association.

Nancy Lynch. Distributed Algorithms. 1996.

Sarah McClure, Amy Ousterhout, Scott Shenker, and Sylvia Ratnasamy. Efficient
scheduling policies for Microsecond-Scale tasks. In 19th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 22), pages 1-18, Renton,
WA, April 2022. USENIX Association.

Mellanox Connectx-4. http://www.mellanox.com/related-docs/prod_adapter_
cards/PB_ConnectX-4_VPI_Card.pdf. Online; accessed 14-Jul-2025.

Nenad Milosevic, Daniel Cason, Zarko Milosevic, and Fernando Pedone. How
robust are synchronous consensus protocols? In 28th International Conference
on Principles of Distributed Systems, OPODIS 2024, December 11-13, 2024, Lucca,
Italy, volume 324 of LIPIcs, pages 20:1-20:25, 2024.

Nenad Milosevic, Daniel Cason, Zarko Milosevic, Robert Soulé, and Fernando
Pedone. Message size matters: Alterbft’s approach to practical synchronous BFT
in public clouds. CoRR, abs/2503.10292, 2025.

NVIDIA MLNX_OFED Hardware Timestamping documentation. https://docs.
nvidia.com/networking/display/mlnxofedv543681lts/time-stamping. Online;
accessed 14-Jul-2025.

Intel® Infrastructure Processing Unit (Intel® IPU) Platform F2000X-PL
. https://www.intel.com/content/www/us/en/software-kit/750666/modelsim-
intel-fpgas-standard-edition-software-version-20-1-1.html. Online; accessed
14-Jul-2025.

Diego Ongaro and John Ousterhout. In Search of an Understandable Consensus
Algorithm. In 2014 USENIX Annual Technical Conference, USENIX ATC 14, pages
305-319, 2014.

Amy Ousterhout, Joshua Fried, Jonathan Behrens, Adam Belay, and Hari Bal-
akrishnan. Shenango: Achieving high CPU efficiency for latency-sensitive data-
center workloads. In 16th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 19), pages 361-378, Boston, MA, February 2019. USENIX
Association.

Simon Peter, Jialin Li, Irene Zhang, Dan R. K. Ports, Doug Woos, Arvind Krishna-
murthy, Thomas Anderson, and Timothy Roscoe. Arrakis: The operating system
is the control plane. ACM Trans. Comput. Syst., 33(4), nov 2015.

Marius Poke and Torsten Hoefler. Dare: High-performance state machine repli-
cation on rdma networks. In Proceedings of the 24th International Symposium on
High-Performance Parallel and Distributed Computing, HPDC 15, page 107-118,
New York, NY, USA, 2015. Association for Computing Machinery.

Redis. https://redis.io. Online; accessed 14-Jul-2025.

RedisRaft, consistent key-value store. https://github.com/RedisLabs/redisraft.
Online; accessed 14-Jul-2025.

Redis Replication Docs. https://redis.io/docs/latest/operate/oss_and_stack/
management/replication/. Online; accessed 14-Jul-2025.

Rocky linux - download. https://rockylinux.org/download. Online; accessed
14-Jul-2025.

Davide Rovelli, Pavel Chuprikov, Philipp Berdesinski, Ali Pahlevan, Patrick
Jahnke, and Patrick Eugster. FiDe: Reliable and Fast Crash Failure Detection to
Boost Datacenter Coordination. In 2025 USENIX Annual Technical Conference

14

[73

(74]

[75

(83

(84]

[85

(ATC’25), pages 765-788, 2025.

Davide Rovelli and Patrick Eugster. Digital cluster circuits for reliable datacenters.
In 2025 55th Annual IEEE/IFIP International Conference on Dependable Systems
and Networks - Supplemental Volume (DSN-S), pages 201-205, 2025.

Davide Rovelli, Michele Dalle Rive, and Patrick Eugster. Toward a practical
deterministic datapath for 6g end devices. IEEE Network, 39(3):75-82, 2025.
Nicolas Schiper and Sam Toueg. A robust and lightweight stable leader election
service for dynamic systems. In 2008 IEEE International Conference on Dependable
Systems and Networks With FICS and DCC (DSN), pages 207-216, 2008.

R.D. Schlichting and F.B. Schneider. Fail-Stop Processors: An Approach to
Designing Fault-Tolerant Computing Systems. ACM Transactions on Computer
Systems (TOCS), 1(3):222-238, 1983.

Jonathan Stone and Craig Partridge. When the crc and tcp checksum disagree.
SIGCOMM Comput. Commun. Rev., 30(4):309-319, aug 2000.

Stress-ng tool. http://colinianking.github.io/stress-ng/. Online; accessed 20-May-
2025.

Mark Sutherland, Siddharth Gupta, Babak Falsafi, Virendra Marathe, Dionisios
Pnevmatikatos, and Alexandres Daglis. The nebula rpc-optimized architecture. In
Proceedings of the ACM/IEEE 47th Annual International Symposium on Computer
Architecture, ISCA °20, page 199-212. IEEE Press, 2020.

Catching Corrupted OSPF Packets! - Blog. https://routingfreak.wordpress.com/
2011/03/01/catching- corrupted- ospf-packets/. Online; accessed 14-Jul-2025.
How both TCP and Ethernet checksums fail - Blog. https://www.evanjones.ca/
tcp-and-ethernet-checksums-fail. html. Online; accessed 14-Jul-2025.

Parth Thakkar, Rohan Saxena, and Venkata N. Padmanabhan. Autosens: inferring
latency sensitivity of user activity through natural experiments. In Proceedings
of the 21st ACM Internet Measurement Conference, IMC °21, page 15-21, New
York, NY, USA, 2021. Association for Computing Machinery.

Maarten Van Steen and Andrew S Tanenbaum. Distributed systems. Maarten van
Steen Leiden, The Netherlands, 2017.

Xingda Wei, Rongxin Cheng, Yuhan Yang, Rong Chen, and Haibo Chen. Charac-
terizing off-path SmartNIC for accelerating distributed systems. In 17th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 23), pages
987-1004, Boston, MA, July 2023. USENIX Association.

Irene Zhang, Amanda Raybuck, Pratyush Patel, Kirk Olynyk, Jacob Nelson,
Omar S. Navarro Leija, Ashlie Martinez, Jing Liu, Anna Kornfeld Simpson, Sujay
Jayakar, Pedro Henrique Penna, Max Demoulin, Piali Choudhury, and Anirudh
Badam. The demikernel datapath os architecture for microsecond-scale datacen-
ter systems. In Proceedings of the ACM SIGOPS 28th Symposium on Operating
Systems Principles, SOSP ’21, page 195-211, New York, NY, USA, 2021. Association
for Computing Machinery.

Yang Zhou, Zezhou Wang, Sowmya Dharanipragada, and Minlan Yu. Electrode:
Accelerating Distributed Protocols with {eBPF}. pages 1391-1407, 2023.

Yang Zhou, Hassan M. G. Wassel, Sihang Liu, Jiaqi Gao, James Mickens, Minlan
Yu, Chris Kennelly, Paul Turner, David E. Culler, Henry M. Levy, and Amin
Vahdat. Carbink: Fault-Tolerant Far Memory. In 16th USENIX Symposium on
Operating Systems Design and Implementation (OSDI "22), pages 55-71, July 2022.
Zookeeper administrator’s guide. https://zookeeper.apache.org/doc/r3.1.2/
zookeeperAdmin.html. Online; Accessed 14-Jul-2025.

http://www.mellanox.com/related-docs/prod_adapter_cards/PB_ConnectX-4_VPI_Card.pdf
http://www.mellanox.com/related-docs/prod_adapter_cards/PB_ConnectX-4_VPI_Card.pdf
https://docs.nvidia.com/networking/display/mlnxofedv543681lts/time-stamping
https://docs.nvidia.com/networking/display/mlnxofedv543681lts/time-stamping
https://www.intel.com/content/www/us/en/software-kit/750666/modelsim-intel-fpgas-standard-edition-software-version-20-1-1.html
https://www.intel.com/content/www/us/en/software-kit/750666/modelsim-intel-fpgas-standard-edition-software-version-20-1-1.html
https://redis.io
https://github.com/RedisLabs/redisraft
https://redis.io/docs/latest/operate/oss_and_stack/management/replication/
https://redis.io/docs/latest/operate/oss_and_stack/management/replication/
https://rockylinux.org/download
http://colinianking.github.io/stress-ng/
https://routingfreak.wordpress.com/2011/03/01/catching-corrupted-ospf-packets/
https://routingfreak.wordpress.com/2011/03/01/catching-corrupted-ospf-packets/
https://www.evanjones.ca/tcp-and-ethernet-checksums-fail.html
https://www.evanjones.ca/tcp-and-ethernet-checksums-fail.html
https://zookeeper.apache.org/doc/r3.1.2/zookeeperAdmin.html
https://zookeeper.apache.org/doc/r3.1.2/zookeeperAdmin.html

	Abstract
	1 Introduction
	2 Background and motivation
	2.1 The rise of programmable network devices
	2.2 Accelerating consensus in datacenters

	3 Design
	3.1 System model
	3.2 Architecture
	3.3 Stable interactions on network hardware

	4 Quorum-less optimal consensus
	4.1 rsbcast
	4.2 Consensus core: lowi

	5 Implementation
	5.1 Development
	5.2 lowi system integration

	6 Evaluation
	6.1 Methodology
	6.2 RQ1: interaction stability
	6.3 RQ2: consensus performance
	6.4 RQ3: fault tolerance and availability
	6.5 RQ4: real-world applications

	7 Nano-consensus in the big picture
	8 Related work
	9 Conclusions
	References

